Introduccion a la arquitectura de
computadores con QtARMSim y

Arduino
Sergio Barrachina Mir Maribel Castillo Catalan
German Fabregat Llueca Juan Carlos Fernandez Fernandez
German Leén Navarro José Vicente Marti Avilés
Rafael Mayo Gual Radl Montoliu Colas

Copyright (© 2015-16 Sergio Barrachina Mir, Maribel Castillo
Catalan, Germéan Fabregat Llueca, Juan Carlos Ferndndez Fer-
nandez, German Leén Navarro, José Vicente Marti Avilés, Rafael
Mayo Gual y Ratl Montoliu Colés.

Esta obra se publica bajo la licencia «Creative Com-
mons Atribucién-Compartirlgual 4.0 Internacionaly.
Puede consultar las condiciones de dicha licencia en:
http://creativecommons.org/licenses/by-sa/4.0/.

@Noel

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

A Laia, jbienvenida!

Indice general

indice general I
Prélogo v
I Introduccion 1
1 Introduccién a la Arquitectura de Computadores 2
1.1. Componentes de un ordenador 3
1.2. El procesador, el ntcleo del ordenador 5
1.3. Introduccion alos buses 26
1.4, Lamemoria 28
IT Arquitectura ARM con QtARMSim 33
2 Primeros pasos con ARM y QtARMSim 34
2.1. Introduccién al ensamblador Thumb de ARM 35
2.2. Introduccién al simulador QtARMSIm 41
2.3. Literales y constantes en el ensamblador de ARM 55
2.4. Inicializacién de datos y reserva de espacio. 58
2.5. Ejercicios L L 64
3 Instrucciones de transformacién de datos 69
3.1. Banco de registros de ARM 70
3.2. Operaciones aritméticas 72
3.3. Operaciones légicas 78
3.4. Operaciones de desplazamiento 80
3.5. Modos de direccionamiento y formatos de instruccion de
ARM 82
3.6. Ejercicios 86
4 Instrucciones de transferencia de datos 91

4.1. Instrucciones de carga 92

Indice general

II

4.2. Instrucciones de almacenamiento 99
4.3. Modos de direccionamiento y formatos de instruccién de
ARM . . o . e 103
4.4. Ejercicioso s 111
5 Instrucciones de control de flujo 114
5.1. Saltos incondicionales y condicionales 115
5.2. Estructuras de control condicionales 119
5.3. Estructuras de control repetitivas 122
5.4. Modos de direccionamiento y formatos de instruccion de
ARM . . o o 126
5.5. Ejercicios o 129
6 Introduccién a la gestién de subrutinas 132
6.1. Llamada y retorno de una subrutina 135
6.2. Paso de pardmetros. L oL 138
6.3. Ejercicios 146
7 Gestion de subrutinas 148
7.1, Lavpila e 149
7.2. Bloque de activacién de una subrutina 154
7.3. Ejercicios Lo 165
IITEntrada/salida con Arduino 168
8 Introduccién a la Entrada/Salida 169
8.1. Generalidades y problematica de la entrada/salida 170
8.2. Estructura de los sistemas y dispositivos de entrada/salida 174
8.3. Ejercicios 179
9 Dispositivos de Entrada/Salida 181
9.1. Entrada/salida de propésito general (GPIO - General Pur-
pose Input Output) L. 182
9.2. Gestion del tiempo o L 191
9.3. Elentorno Arduino 195
9.4. Creacion de proyectos 202
9.5. Ejercicios 207
10 Gestién de la Entrada/Salida y otros aspectos avanzados212
10.1. Gestién de la entrada/salida 213
10.2. Transferencia de datos y DMA 222
10.3. Estandarizacion y extension de la entrada/salida: buses y
controladores L Lo oo 224

10.4. Otros dispositivos 227

Indice general

111

10.5. Ejercicioso Lo

A Informacion técnica ATSAM3XSE

A.1l. GPIO en el Atmel ATSAM3X8E

A.2. La tarjeta de entrada/salida

A.3. El temporizador del Atmel ATSAM3XS8E y del sistema
Arduinoo

A.4. El reloj en tiempo real del Atmel ATSAM3XS8E

A.5. El Temporizador en Tiempo Real (RTT) del Atmel AT-
SAMBX8E e

A.6. Gestion de excepciones e interrupciones en el ATSAM3X8E257

A.7. El controlador de DMA del ATSAM3XS8E

B Breve guia de programacién en ensamblador
B.1. Variables
B.2. Estructuras de programacién
B.3. Estructuras iterativas

C Guia rapida del ensamblador Thumb de ARM
indice de figuras
indice de cuadros

Bibliografia

263

283

286

289

290

Proélogo

Historicamente, el contenido de los cursos de Arquitectura de Compu-
tadores ha seguido el frenético ritmo marcado primero por los avances
tecnologicos y arquitecténicos en el diseno de grandes computadores, y
a partir de los 80, por la evolucion en el diseno de los microprocesadores.
Asi pues, la docencia en Arquitectura de Computadores ha pasado por
seis grandes eras: mainframes, minicomputadores, primeros microproce-
sadores, microprocesadores, RISC y post RISC [Cle00)].

Conforme las universidades han podido acceder a hardware especifi-
co a un coste razonable, este ha pasado a utilizarse ampliamente como
material de referencia. En concreto, los computadores, procesadores o
arquitecturas que han disfrutado de una mayor popularidad en la docen-
cia de Arquitectura de Computadores han sido: el computador PDP-11,
el procesador 68000 de Motorola, el procesador 80x86 de Intel, la ar-
quitectura MIPS y el procesador SPARC. Aunque en ocasiones también
se ha recurrido a computadores hipotéticos dedicados en exclusiva a la
ensefianza de los conceptos arquitecténicos.

En la Universitat Jaume I también fuimos optando por algunas de
las alternativas ya comentadas. Comenzamos con el 68000 de Moto-
rola, mas adelante utilizamos brevemente un computador hipotético y
posteriormente cambiamos a la arquitectura MIPS, que se utiliz6 como
arquitectura de referencia hasta el curso 2013/14.

A principios de 2013, los profesores de la unidad docente de arquitec-
tura de computadores nos plantemos migrar la arquitectura de referencia
a ARM por los siguientes dos motivos. En primer lugar, la arquitectura
ARM presenta muchas caracteristicas que la distinguen de otras ar-
quitecturas contemporaneas, a la vez que al estar basada en RISC, es
relativamente sencilla [Cle99]. En segundo lugar, el hecho de que ARM
sea una arquitectura actual y ampliamente difundida, especialmente en
dispositivos moviles, smartphones y tablets, es un factor especialmente
motivador [Cle10]. Cabe destacar que la popularidad de la arquitectura
ARM ha explotado en las dos ultimas décadas debido a su eficiencia y
a la riqueza de su ecosistema: se han fabricado més de 50 mil millones
de procesadores ARM; méas del 75% de la poblaciéon mundial utiliza
productos con procesadores ARM [HH15].

v

Indice general

Una vez tomada la decision de realizar dicho cambio, comenzamos a
replantearnos las guias docentes y los materiales que se deberian utilizar
en la ensenanza tanto teérica como practica de las distintas asignaturas
relacionadas con la materia de Arquitectura de Computadores.

En el caso de la asignatura FEstructura de Computadores, de pri-
mer curso, primer semestre, partiamos del siguiente material: el libro
Estructura y diseno de computadores: la interfaz software/hardware, de
David A. Patterson y Jonh L. Hennessy [PH11], como referencia para
la parte tedrica de la asignatura; el libro Prdcticas de introduccion a
la arquitectura de computadores con el simulador SPIM, de Sergio Ba-
rrachina, Maribel Castillo, José Manuel Claver y Juan Carlos Fernan-
dez [BMCCCIFF13], como libro de précticas; y el simulador de MIPS
xspim (actualmente QtSpim'), como material de laboratorio.

En un primer momento nos planteamos utilizar como documentacién
para la parte de teoria el libro Computer Organization and Architecture:
Themes and Variations. International Edition., de Alan Clements, y
para la parte de practicas, el libro de préacticas indicado anteriormente
pero adaptado a un simulador de ARM que fuera lo suficientemente
sencillo como para permitir centrarse en los contenidos de la asignatura,
mas que en el manejo del propio simulador.

Desde un primer momento consideramos que la utilizacién de un si-
mulador era adecuada para los conceptos bésicos de los fundamentos
de la arquitectura de computadores. Sin embargo, y aprovechando que
también debiamos adaptar las practicas relacionadas con la parte de la
entrada/salida a la arquitectura ARM, nos planteamos si queriamos con-
tinuar también en esta parte con una experiencia docente basada en el
uso de un simulador o si, por el contrario, apostdbamos por un enfoque
cercano a lo que se ha dado en llamar computacion fisica [O104]. En el
primer caso, las practicas consistirian en programar en ensamblador el
c6digo necesario para interactuar con los dispositivos de entrada/salida
proporcionados por el simulador que fuera a utilizarse. En el segundo
caso, se interactuaria con dispositivos fisicos, lo que permitiria ser cons-
ciente de qué es lo que se quiere que pase en la realidad y observar cémo
la aplicacién que se desarrolle es capaz, o no, de reaccionar adecuada-
mente ante eventos externos. Siguiendo este enfoque méas aplicado, se
podria relacionar ficilmente la secuencia de acciones a las que un dispo-
sitivo tiene que dar respuesta, con la programacion que se haya realizado
de dicho dispositivo. Asi pues, consideramos que esta segunda opcién se-
ria mucho més enriquecedora que simplemente limitarse a observar en la
pantalla de un simulador si un cédigo de gestién de la entrada/salida se
comporta como tedéricamente deberia. Es mas, puesto que mucha de la
problematica de la entrada/salida estéd directamente relacionada con la

1QtSpim: http://spimsimulator.sourceforge.net/

http://spimsimulator.sourceforge.net/

Indice general

VI

interaccion hombre-maquina, esta segunda opcién ofrece la oportunidad
de enfrentarse a un escenario real, en el que si no se toman las debidas
precauciones, no todo funcionard como se espera.

En base a las anteriores decisiones, quedaba por concretar qué si-
mulador de ARM se utilizaria para las préacticas no relacionadas con la
entrada/salida y qué componente hardware utilizar para dicha parte.
Tras evaluar varios entornos de desarrollo y simuladores de ARM, opta-
mos por disenar nuestro propio simulador, Q¢ ARMSim [BMFLFFLN15],
para aquellas précticas no relacionadas con la entrada/salida. Por otro
lado, y tras valorar varias alternativas, optamos por la tarjeta Arduino
Due [BMFLMA15] para las practicas de entrada/salida.

La versién anterior de este libro, Prdcticas de introduccion a la ar-
quitectura de computadores con QtARMSim y Arduino [BMCCFLT14],
que escribimos para el curso 2014/15 como manual de practicas, propo-
nia un conjunto de practicas sobre QtARMSim y Arduino y referenciaba
al libro de Alan Clements para los aspectos tedricos de la asignatura.

Este libro es una versién ampliada y reestructurada del anterior.
Incorpora aquellos aspectos tedéricos que no se abordaban en la version
previa, por lo que ahora puede utilizarse como material de referencia tan-
to de teoria como de laboratorio. Ademaés, propone una secuenciacién
distinta de algunos de sus capitulos, principalmente para que el primer
contacto con el ensamblador sea con aquellos tipos de instrucciones con-
ceptualmente mas sencillos. Adicionalmente, los formatos de instrucciéon
que antes se abordaban en un capitulo propio, ahora se han incluido en
aquellos capitulos en los que se presentan las instrucciones correspon-
dientes. Por ultimo, se han reorganizado las colecciones de ejercicios en
cada capitulo con el objetivo de que se pueda abarcar todo el contenido
de un capitulo antes de enfrentarse a ejercicios de mayor complejidad.

El libro esté estructurado en tres partes. La primera parte aborda
los aspectos tedricos basicos de la arquitectura de computadores. La
segunda parte presenta aspectos mas avanzados de los fundamentos de la
arquitectura de computadores tomando como referencia la arquitectura
ARM y proponiendo ejercicios sobre el simulador QtARMSim. La tltima
parte describe la problemdtica de la entrada/salida proponiendo una
serie de précticas con la tarjeta Arduino Due. En concreto, este manual
pretende cubrir los siguientes temas de la unidad docente Fundamentos
de arquitectura de computadores definida en el Curriculum Guidelines
for Undergraduate Degree Programs in Computer Engineering [IEE04]:

= Organizaciéon de la maquina de von Neumann.
s Formatos de instruccion.

s El ciclo de ejecucion; decodificacion de instrucciones y su ejecucion.

Indice general

VII

= Registros.

= Tipos de instrucciones y modos de direccionamiento.
= Mecanismos de llamada y retorno de una subrutina.
s Programacién en lenguaje ensamblador.

» Técnicas de entrada/salida e interrupciones.

Ademaés, como complemento a este libro se ha creado el siguiente
sitio web: http://lorca.act.uji.es/libro/introARM/. En el sitio web se
puede consultar y obtener material adicional relacionado con este libro.
Entre otros, el entorno de desarrollo de Arduino modificado para la
ejecucién de programas en ensamblador, las guias para su instalacion en
GNU/Linux y en Windows y la coleccién de ejercicios utilizados en la
tercera parte del libro.

Deseamos que este libro te sea 1til y esperamos poder contar con tus
sugerencias para mejorarlo.

http://lorca.act.uji.es/libro/introARM/

Parte 1

Introduccion

CArPiTULO

Introduccién a la Arquitectura
de Computadores

Indice
1.1. Componentes de un ordenador 3
1.2. El procesador, el nicleo del ordenador 5
1.3. Introducciéon alos buses 26
1.4. Lamemoria 28

Los primeros procesadores que aparecieron en el mercado se compo-
nian de muy pocos transistores —decenas de miles— y tenian un campo
muy reducido de aplicaciones. Se trataba de sencillos microcontrolado-
res destinados a usos muy especificos y que béasicamente eran empleados
en sistemas de control. Han pasado méas de 40 anos desde entonces y los
avances tecnolégicos han provocado notables cambios tanto en el cam-
po de los procesadores como en el de sus aplicaciones. Los procesadores
cada vez se componen de mas transistores —actualmente del orden de
miles de millones—, lo que ha permitido mejorar notablemente su ar-
quitectura e incorporar técnicas que los hacen mas rapidos, complejos y
econémicos, lo que a su vez ha propiciado que su campo de aplicacién
sea cada vez més extenso.

Actualmente, el procesador es el elemento principal de los ordena-
dores de sobremesa y portatiles y de muchos dispositivos electrénicos
de gran uso, como agendas, mdviles, dispositivos de uso doméstico, etc.
No obstante, los principios bésicos de un ordenador, o de cualquier dis-
positivo que incluya un ordenador, son muy sencillos. En este capitulo

1.1. Componentes de un ordenador

se describen los elementos bésicos que componen un ordenador y sus
principios de funcionamiento.

1.1. Componentes de un ordenador

El modelo de funcionamiento de los ordenadores actuales continda
siendo, con variaciones poco significativas, el establecido por John von
Neumann en 1949, que a su vez se basd en las ideas de la maquina
analitica de Charles Babbage, de 1816. Estas ideas, con casi doscientos
anos de antigiiedad, materializadas en circuitos muy rapidos, con miles
de millones de transistores, hacen que la informatica haya llegado a ser
lo que conocemos hoy en dia.

El principio de funcionamiento de los ordenadores es sencillo. El nii-
cleo del ordenador transforma y modifica datos que tiene almacenados,
dirigido por una sucesion de 6rdenes que es capaz de interpretar, y que
también estan almacenadas en él. Este conjunto de 6rdenes y datos cons-
tituye lo que se conoce como programa. Siguiendo un programa, un
ordenador es capaz de modificar y transformar datos para, por ejemplo,
hacer cdlculos matematicos o buscar palabras en un texto. Ademés de
lo anterior, el ordenador también dispone de un conjunto de elementos
que hacen posible su interacciéon con el mundo exterior, lo que le permite
recibir los datos de partida y las érdenes, y comunicar los resultados.

De esta descripcién, simple pero fiel, del funcionamiento de un or-
denador se deduce que contiene las siguientes tres clases de elementos
(véase la Figura 1.1), con funciones claramente diferenciadas.

Procesador

$x

Memoria

Entrada/Salida

R

Figura 1.1: Componentes de un computador

1.1. Componentes de un ordenador

El ntcleo del ordenador, que recibe el nombre de procesador, es
capaz de encontrar, entender y mandar realizar las érdenes, también
llamadas instrucciones. Se puede decir que el procesador es el elemen-
to del ordenador capaz de: 1) ejecutar las instrucciones codificadas en
un programa, encontrando los datos que se van a transformar y alma-
cenando el resultado de dicha transformacion; y 11) generar todas las
senales eléctricas necesarias para coordinar el funcionamiento de todo el
sistema.

Por otro lado, el elemento que almacena los datos y las instrucciones
de un programa recibe el nombre de memoria. Esta se compone de
una colecciéon ordenada de recursos de almacenamiento de manera que
cada uno de ellos se identifica por una direccién. Cuando la memoria
de un ordenador almacena de forma indistinta datos e instrucciones,
tal y como se propuso originalmente, se dice que dicho ordenador tiene
una arquitectura von Neumann. Por contra, si existe una memoria
especifica para almacenar los datos y otra distinta para las instrucciones,
se dice que el ordenador en cuestion presenta una arquitectura Harvard.
Mas adelante se profundizard més acerca de esta diferencia. En cualquier
caso, y salvo por este detalle, el funcionamiento de la memoria de los
ordenadores es el mismo independientemente de la arquitectura elegida.

Por tltimo, la entrada/salida estéd formada por el conjunto de com-
ponentes que permiten relacionar un ordenador con el mundo exterior.
La comunicacion del ordenador con el exterior es compleja y admite
tanta diversidad como las aplicaciones actuales de la informaética, que
como sabemos son muchas y no todas implican la comunicacién de datos
entre el ordenador y usuarios humanos. Por eso, la entrada/salida de un
ordenador es igualmente compleja y variada, tal y como se verd en su
momento.

Una vez vistas las clases de elementos que constituyen un ordenador,
es posible reformular el funcionamiento de un ordenador diciendo que el
procesador ejecuta un programa, o secuencia de instrucciones, almace-
nado en memoria para realizar, guiado por aquél, las transformaciones
adecuadas de un conjunto de datos, que también estd almacenado en la
memoria. La ejecucién de determinadas instrucciones permite la lectura
de datos y la presentacién de resultados, y en general, la comunicacién
con el exterior, que se realiza a través de la entrada/salida.

En los siguientes apartados se describe con méas detalle el funciona-
miento de cada uno de dichos componentes con el objetivo de profundi-
zar en todos los aspectos del funcionamiento del ordenador. Aunque en
general se seguird el modelo de la arquitectura von Neumann, con una
Unica memoria principal almacenando tanto datos como instrucciones,
en el apartado dedicado a la memoria se explicaran las diferencias, ven-
tajas e inconvenientes de esta arquitectura con respecto a la Harvard,
y se describird el modelo més comtn de los ordenadores de proposito

1.2. El procesador, el niicleo del ordenador

general actuales.

1.2. El procesador, el ntcleo del ordenador

Aunque los tres componentes que se han mencionado son necesarios
para que funcione un ordenador, el procesador es el elemento principal
del ordenador. Las razones son evidentes. Por una parte, es capaz de
interpretar 6rdenes y generar las senales de control que, con mas o menos
intermediaciones posteriores, rigen el funcionamiento de todo el sistema.
Por otra parte, el conjunto de todas las 6rdenes que es capaz de ejecutar,
lo que se llama el conjunto de instrucciones' (de instruction set,
en inglés) del procesador, determina las caracteristicas del sistema y
la estructura de los programas. El tamano y la forma de organizar la
memoria, la manera de interactuar con la entrada/salida, vienen también
determinadas por el procesador. De esta manera, el procesador establece
las caracteristicas propias diferenciales de cada ordenador, lo que se
denomina arquitectura, y que definiremos con rigor mas adelante.

Es posible clasificar los procesadores dependiendo de las caracteris-
ticas del ordenador en el que se van a utilizar en: 1) procesadores de
altas prestaciones y 11) procesadores de alta eficiencia energética. Los
primeros se utilizan tanto para ordenadores personales o de sobreme-
sa como para superordenadores destinados a calculo masivo, como por
ejemplo, el supercomputador MareNostrum?. La prioridad en el disefio
de estos procesadores es la ejecucion del mayor niimero posible de ins-
trucciones u operaciones por segundo. El juego de instrucciones de este
tipo de procesadores suele ser muy amplio y frecuentemente proporcio-
nan recursos que facilitan al sistema operativo la gestién avanzada de la
memoria y la gestién de la multitarea. Los procesadores Xeon de Intel
son actualmente los lideres en este mercado.

El segundo tipo de procesadores, los de alta eficiencia energética, esta
destinado a dispositivos alimentados mediante baterias, como son, por
ejemplo, los teléfonos inteligentes y las tabletas, y que tienen el ahorro
energético como uno de sus objetivos de disefio. Los principales repre-
sentantes de este grupo son los procesadores basados en la arquitectura
ARM. Algunas versiones de esta arquitectura estan especificamente di-
sefladas para trabajar con pocos recursos, optimizar el tamafio de las
instrucciones para ahorrar espacio en memoria y disponer de un juego
de instrucciones simple y sencillo. Intel también tiene una familia de
procesadores pugnando por este mercado: los Atom.

'El conjunto de instrucciones también recibe los nombres de juego de instruc-
ciones y repertorio de instrucciones.
2http:/ /www.bsc.es/marenostrum-support-services

http://www.bsc.es/marenostrum-support-services

1.2. El procesador, el niicleo del ordenador

Aunque los términos procesador y microprocesador se suelen utilizar
indistintamente, el término microprocesador se refiere concretamente
a un procesador implementado por medio de un circuito integrado.

Por otro lado, un microcontrolador es un circuito integrado que
incorpora no solo un procesador —generalmente muy sencillo—, sino
también las restantes partes del ordenador, todo en el mismo circuito
integrado. Los microcontroladores estan orientados a realizar una o al-
gunas tareas muy concretas y especificas, como por ejemplo el control
de frenado ABS de un coche o cualquier tarea de un electrodoméstico.
Los fabricantes de microcontroladores suelen ofrecer una amplia gama
de modelos con distintas prestaciones. De esta forma, es posible selec-
cionar un modelo que se ajuste a las necesidades de la aplicacion en la
que va a ser utilizado, abaratando asi el coste del producto final. Como
ejemplos de microcontroladores estdn los PIC de la empresa Microchip
o el microcontrolador SAM3XS8E, utilizado en las tarjetas Arduino DUE
y que incorpora: un procesador ARM Cortex M3 de 32 bits, memoria y
un conjunto de dispositivos de E/S.

1.2.1. Partes del procesador

Para explicar cémo el procesador lleva a cabo sus funciones, se pue-
de considerar que estd compuesto de dos partes, con cometidos bien
diferenciados: la unidad de control y el camino de datos (véase la Figu-
ra 1.2). La unidad de control es la encargada de generar y secuenciar
las senales eléctricas que sincronizan el funcionamiento tanto del propio
procesador, mediante senales internas del circuito integrado, como del
resto del ordenador, con lineas eléctricas que se propagan al exterior a
través de sus pines de conexién. El camino de datos, por su parte,
estd formado por las unidades de transformacion y de transporte de da-
tos. Es el responsable de almacenar, transportar y realizar operaciones
—sumas, restas, operaciones légicas, etcétera— con los datos, siguiendo
la coordinacion de la unidad de control.

Aunque la divisién en unidad de control y camino de datos es mas
conceptual que fisica, es facil identificar los bloques estructurales dentro
del procesador que pertenecen a cada una de estas partes. Sin preocu-
parnos especialmente de esta circunstancia, vamos a describir a conti-
nuacién los elementos estructurales mas importantes que se encuentran
en todos los procesadores:

Registros. Son elementos de almacenamiento propios del procesador.
Asi como la memoria es un elemento externo al procesador que
permite almacenar gran cantidad de datos e instrucciones, los re-
gistros constituyen un elemento interno de almacenamiento que
permiten almacenar una pequena cantidad de informacién. La li-

1.2. El procesador, el niicleo del ordenador

Vs

Unidad de Control

_ Sefiales de control ,/

! |
E— o Memoria
N Circuitos no
l/ aritméticos
Entrada/salida

Buses

Registros

Camino de Datos

Buses

(S J

Figura 1.2: Componentes de un procesador

mitacion en la cantidad de informacion que pueden almacenar los
registros es debida a que el nimero de registros disponibles en un
procesador es muy pequeno. Eso si, gracias a que son un elemento
interno del procesador y a que el nimero de registros es limita-
do, el acceso a la informacion almacenada en ellos es mucho mas
sencillo y rapido que el acceso a la memoria.

Los registros pueden clasificarse segin su visibilidad en:

Registros de uso interno. Son registros usados internamente por
el procesador, son necesarios para su funcionamiento, pero no
son visibles por el programador.

Registros visibles por el programador. Son aquellos registros
que pueden ser utilizados explicitamente por las instrucciones
maquina.

Por otro lado, ya sean registros internos o visibles al programador,
los registros se pueden clasificar en cuanto a su funcionalidad como:

Registros de propésito especifico. Tienen asignados una fun-
cién especifica. Entre los registros de propésito especifico des-
tacan: el contador de programa, el registro de instruccién y
el registro de estado.

Registros de propdsito generalde propdsito general. Son re-
gistros que no tienen un cometido predeterminado y que se
utilizan como almacenamiento temporal de los datos que se
estan procesando en un momento dado.

1.2. El procesador, el niicleo del ordenador

Miés adelante se comentara con mas profundidad la funcién y las
caracteristicas de los registros y su relacién con la arquitectura.

Unidades de transformacion. Permiten realizar operaciones con los
datos. Son circuitos electrénicos que generan un resultado en fun-
cién de uno o varios datos iniciales. Todos los procesadores cuentan
entre ellas con una unidad aritmético-légica (o ALU), que suele
operar con dos datos de entrada y que es capaz de realizar sumas,
restas y las operaciones logicas bit a bit més comunes. Tampoco
suele faltar en los procesadores una unidad de desplazamiento que
entrega a su salida rotaciones o desplazamientos de un nimero de
bits dado, del valor presente a su entrada. Ademéas de éstas, es
frecuente encontrar unidades que realicen la multiplicacién o di-
visién de datos enteros, todo tipo de operaciones sobre datos en
coma flotante, u operaciones mas especializadas sobre vectores de
datos para tratamiento de senal, multimedia, graficos, etcétera.

Circuitos digitales y secuenciadores. Se encargan de generar, trans-
formar y distribuir las sefiales de control que sincronizan la ejecu-
cién de las instrucciones y, en general, el funcionamiento del siste-
ma. Estos circuitos no son importantes para saber qué conjunto de
instrucciones es capaz de interpretar el procesador, pero si absolu-
tamente necesarios para que sea capaz de hacerlo correctamente.

Buses. Estan compuestos por un conjunto de lineas conductoras que
conectan los distintos componentes del procesador por los que fluye
la informacion, esto es, los registros y las unidades de transforma-
ciéon. Tanto las seniales de control como los datos que transforma
un procesador son considerados, l6gicamente, valores binarios de
varios bits —entre 8 y 64 segun el tipo de procesador—, que se
almacenan y distribuyen también como seniales eléctricas a través
de estas lineas. Dado el ntimero y el tamano de los registros y la
gran cantidad de unidades funcionales de los procesadores de hoy
en dia, los buses constituyen una parte importante del procesador
—vy también del resto del ordenador en el que desempenan una
funcién similar—.

1.2.2. Ejecucién de instrucciones

Al inicio del capitulo hemos descrito, de forma simple y poco detalla-
da, el funcionamiento de un ordenador. Una vez descrito el procesador
y sus partes de forma més pormenorizada, es posible explicar con maés
detenimiento su funcionamiento y, con ello, el del ordenador casi en
su totalidad —salvo lo relacionado con los elementos de entrada/sali-
da, que se verdn explicitamente mas adelante—. Cuando se enciende un

1.2. El procesador, el niicleo del ordenador

ordenador, sus circuitos activan de forma adecuada la sefnal de inicio
del procesador, lo que se conoce como reset. Entonces el procesador
comienza a funcionar y, tras un proceso de configuraciéon interna, eje-
cuta® la primera instruccién, ubicada en una direccién predeterminada
de la memoria —lo que se suele conocer como direcciéon o vector de
reset—. A partir de ese momento, y hasta que se detiene su funciona-
miento, el procesador no hace otra cosa que ejecutar una instruccién tras
otra y, como se ha comentado, ir transformando y moviendo los datos
de acuerdo con las instrucciones ejecutadas. De esta manera, para en-
tender cémo funciona un procesador, basta con saber cémo se ejecutan
las instrucciones y el resultado que produce, sobre los datos o el sistema,
la ejecucién de cada una de ellas.

Independientemente de la operaciéon que realicen, todas las instruc-
ciones se ejecutan siguiendo una serie de pasos que se conocen como
fases de ejecuciéon. Estas fases son comunes a todos los procesadores,
aunque puedan llevarse a cabo con diferencias en cada uno de ellos, so-
bre todo en lo que afecta a su temporizacién. Las fases de ejecuciéon de
una instruccion reciben el nombre de ciclo de instruccién y son:

1. Lectura de la instruccién. El procesador mantiene en uno de sus
registros, llamado generalmente contador de programa —abreviado
como PC, de Program Counter en inglés—, la direccién de memoria
de la siguiente instruccién que va a ejecutar. En esta fase, el procesa-
dor envia a la memoria, mediante los buses de interconexién externos
al procesador, la direccién almacenada en el PC y la memoria respon-
de devolviendo la instruccién a ejecutar. Esta fase también se suele
nombrar en la literatura como btisqueda de la instruccién.

2. Decodificacién de la instruccién. El procesador almacena la ins-
truccion recibida de la memoria en uno de sus registros internos, el
registro de instrucciones. La decodificacién consiste en que los circui-
tos de control que forman parte de la unidad de control interpreten
dicha instruccién y generen la secuencia de sefiales eléctricas que per-
miten ejecutarla especificamente. En muchos procesadores esta fase
no consume tiempo pues la circuiteria ya estd preparada para fun-
cionar adecuadamente guiada por los bits de la propia instruccién.

3. Incremento del contador de programa. Como se ha dicho, el
procesador ejecuta una instruccion tras otra. Para que al terminar
la ejecucién de la instruccién en curso se pueda comenzar con la

3Una instruccién especifica ciertas acciones que debe llevar a cabo el procesador.
Ejecutarla implica realizar efectivamente estas acciones. Como la propia instruccién
incluye informacién acerca de sus operandos, transformacién, etcétera, es frecuente
utilizar también la expresién interpretar una instruccién.

1.2. El procesador, el niicleo del ordenador

10

siguiente, el PC debe incrementarse segiin el tamario de la instrucciéon
leida, que es lo que se hace en esta fase.

4. Ejecucion de la instruccién. Las fases anteriores son comunes
a todas las instrucciones; las diferencias entre unas instrucciones y
otras, se manifiestan tnicamente en esta fase de ejecucién, que se
puede descomponer en tres subetapas que se dan en la mayor parte
de instrucciones:

4.1 Lectura de los operandos. Casi todas las instrucciones operan
con datos o los copian de unos recursos de almacenamiento a
otros. En esta fase se leen los datos que se van a tratar, llamados
normalmente operandos fuente, desde su localizacién.

4.2 Ejecucién. En esta fase se realiza la transformacion de los datos
leidos en una de las unidades del procesador, por ejemplo, una
operacion aritmética entre dos operandos fuente obtenidos en la
subetapa anterior.

4.3 Escritura de resultados. En esta parte de la ejecucion, el re-
sultado generado en la fase anterior se almacena en algtin recurso
de almacenamiento llamado operando destino.

Una vez completadas las fases anteriores, se ha completado la ejecu-
cién de una instruccion y el procesador vuelve a empezar por la primera
de ellas. Como el PC se ha incrementado para contener la direccién de
la siguiente instruccién a ejecutar, el procesador repetird los mismos pa-
sos, pero esta vez para la siguiente instruccién, por tanto, continuard
con la ejecuciéon de una nueva instrucciéon. Asi hasta el infinito o hasta
que se apague la fuente de alimentacién —o se ejecute alguna instruc-
cién especial que detenga el funcionamiento del procesador y, con ello,
su consumo de energia—.

Conviene tener en cuenta que estas fases de ejecucién, que se han
presentado secuencialmente, pueden en la préactica ejecutarse con orde-
naciones diferentes, sobre todo en lo que respecta a la ejecucién simulta-
neamente de distintas fases de varias instrucciones. Sin embargo, para los
objetivos de este texto, quedémonos con la secuencia de fases tal y como
se ha explicado, y con que las instrucciones se ejecutan secuencialmente,
una tras otra, a medida que se incrementa el contador de programa,
yva que es la forma mads adecuada para entender el funcionamiento del
ordenador. En otros textos mas avanzados se puede encontrar todo lo
referente a la ejecucion simultanea, la ejecucion fuera de orden, etcétera.

1.2.3. Tipos de instrucciones

Las instrucciones que puede ejecutar cualquier procesador se pueden
clasificar en un conjunto reducido de tipos. El ntimero y la forma de

1.2. El procesador, el niicleo del ordenador

11

las instrucciones dentro de cada tipo marca las diferencias entre las
distintas arquitecturas de procesador. Se describen a continuacion los
distintos tipos de instrucciones que puede ejecutar un procesador.

Las instrucciones de transformacion de datos son las que rea-
lizan operaciones sobre los datos en alguna de las unidades de trans-
formacion del procesador. Como estas operaciones requieren operandos
de entrada y generan un resultado, siguen fielmente las tres subfases
de ejecucion descritas en el apartado anterior. El ntimero y tipo de ins-
trucciones de esta clase que implemente un procesador dependera de las
unidades de transformacién de datos de que disponga.

Las instrucciones de transferencia de datos son las encarga-
das de copiar los datos de unos recursos de almacenamiento a otros. Lo
mas comun es que se transfieran datos entre los registros y la memoria,
y viceversa, pero también pueden moverse datos entre registros o, con
menos frecuencia, entre posiciones de memoria. Las instrucciones espe-
cificas que intercambian datos con la entrada/salida, si existen en una
arquitectura, también se clasifican dentro de este tipo de instrucciones.

Las instrucciones de control del flujo del programa son las que
permiten alterar el orden de ejecucién de las instrucciones de un pro-
grama. Segun lo descrito en el apartado anterior, el procesador ejecuta
una instruccién, luego la siguiente, luego otra, etcétera. De esta forma,
el procesador ejecutaria todas las instrucciones que se encuentran en la
memoria al ir recorriendo las respectivas direcciones secuencialmente.
Sin embargo, con algo tan simple como que haya instrucciones que pue-
dan modificar el contenido del PC, siendo éste por tanto el operando
destino de dichas instrucciones, se conseguiria alterar el flujo de ejecu-
cién de un programa para que éste no fuera el estrictamente secuencial.
Estas son las instrucciones de control de flujo de programa o instruc-
ciones de salto, cuya finalidad es modificar el contenido del PC con la
direccion efectiva de memoria hacia donde se quiere desviar la ejecucion
de un programa (direccién del salto). En muchos casos estas instruccio-
nes verifican una condicién de datos en la subfase de ejecucién, de esta
manera el programa puede decidir qué instrucciones ejecuta en funciéon
de los datos con que estd trabajando. Este tipo de instrucciones per-
miten implementar estructuras de programacién iterativas —for, while,
etc.— o condicionales —if, else, etc.—.

Por 1ltimo, muchos procesadores disponen de distintos modos de
funcionamiento o de configuraciones que influyen en su relacién con el
sistema o son propios del procesador. Las instrucciones de control
del procesador sirven para cambiar de modo de funcionamiento del
procesador, por ejemplo, entre modo de bajo consumo y funcionamiento
normal, configurar alguna caracteristica como la habilitacién de inte-
rrupciones o la forma de gestionar la memoria, etcétera. Son instruc-
ciones relacionadas con la arquitectura de cada procesador y se utilizan

1.2. El procesador, el niicleo del ordenador

12

normalmente en codigo del sistema operativo y rara vez en programas
de aplicacién.

1.2.4. Codificacion de instrucciones y formatos de
instrucciéon

Tal y como se ha visto, el procesador ejecuta una instruccion llevando
a cabo una secuencia de fases. En la primera fase del ciclo de instruccion,
lee la instruccién desde la memoria. En la segunda fase, al decodificar
la instruccion, obtiene informacién acerca de los operandos fuente, la
operacion a realizar con ellos y el lugar en el que se debera almacenar el
resultado. En la cuarta fase, la de ejecucion de la instruccion, se realiza la
ejecucién propiamente dicha de la instruccién utilizando la informacion
obtenida gracias a los dos primeras fases. Analizando lo anterior se puede
deducir, por una parte, que la instruccién en si es un tipo de informacién
que puede almacenarse en memoria y, por otra, que la instruccién debe
contener indicaciones acerca de: 1) la operaciéon que debe realizar el
procesador, 11) sus operandos fuente y 111) el destino del resultado.

Efectivamente, como se vera en un apartado posterior, la memoria
almacena digitos binarios —unos y ceros légicos— llamados bits, agru-
pados en conjuntos de 8 que se denominan bytes. Cada una de las
instrucciones que un procesador es capaz de interpretar se codifica uti-
lizando un cierto ntmero de bytes*, pudiendo haber instrucciones de la
misma arquitectura que requieran de un nimero distinto de bytes. El
grupo de bytes que constituye una determinada instruccién de una ar-
quitectura dada se codifica siguiendo un formato concreto que se define
durante el diseno de dicha arquitectura. Un formato de instruccién
determina cémo codificar la informacién que contiene una instruccion,
especificando los campos en los que se divide el conjunto de bits que
forman dicha instruccién y el tamafio —nimero de bits— y contenido
de cada campo. Cada uno de estos campos codifica una informacién di-
ferente: 1) lo que hace la instruccién, lo que se conoce como codigo de
operaciéon —abreviado generalmente como opcode, por operation code en
inglés— y 11) los operandos fuente y destino, que se especifican mediante
lo que se llama modos de direccionamiento.

Las instrucciones, vistas como valores o conjuntos de bytes en me-
moria, son el nivel de abstraccién més bajo de los programas, lo que se
conoce como codigo o lenguaje maquina. Sin embargo, tanto el pro-
cesador como sus instrucciones son disefiados por seres humanos, quienes
también han disefiado una traduccién del lenguaje maquina comprensi-
ble por los programadores humanos, llamada lenguaje ensamblador.
En este lenguaje, los cédigos de operacion, que son niimeros, se traducen

4En algunos casos raros, siempre con arquitectura Harvard, el tamafio en bits de
la instruccién puede no ser miltiplo de 8.

1.2. El procesador, el niicleo del ordenador

13

por palabras o apdcopes llamados mnemonicos que recuerdan, en inglés,
la operaciéon que realiza cada instruccién. Los datos, tanto fuente como
destino, se incorporan separados por comas y con un formato previamen-
te especificado y facil de comprender. Cada instruccién en ensamblador
se corresponde con una en cédigo maquina’, si bien aquéllas son texto
legible en lugar de bytes en memoria.

El Cuadro 1.1 muestra, para tres arquitecturas de procesador re-
presentativas de los distintos tipos de arquitecturas existentes, algunas
instrucciones expresadas en lenguaje ensamblador y en cdédigo méquina.
El c6digo maquina se ha representado utilizando la notacién hexadeci-
mal, donde cada byte se codifica utilizando dos cifras.

El Cuadro 1.2 muestra las instrucciones del Cuadro 1.1, pero identi-
ficado mediante distintos colores los diferentes campos de los que consta
cada instruccién. También se muestra el cédigo maquina de cada ins-
truccion representado en binario, marcando qué bits de cada instruccién
en codigo maquina codifican qué campo de la instruccién utilizando la
misma codificacién de colores que la usada en la instruccién en ensambla-
dor. El formato de instruccién, establecido a priori, es quien determina
esta division de cada instruccion en campos. El procesador y su conjun-
to de instrucciones se disefian a la vez, de manera que los circuitos del
procesador, al recibir los distintos campos a su entrada, son capaces de
realizar de manera electrénica las operaciones requeridas sobre los datos
dados, para ejecutar correctamente la instruccién.

Ademas de los bits que forman el codigo de operacion, que se mues-
tran en azul, al igual que el mnemonico, en el resto de los campos se
codifica como obtener los operandos fuente, o dénde almacenar el resul-
tado de la accién, en el caso de las instrucciones que tienen operando
destino.

Como se puede deducir de los Cuadros 1.1 y 1.2, algunos procesado-
res tienen tamanos de instruccion fijos y formatos mas o menos regulares,
mientras que otros tienen una gran variedad de formatos y tamanos de
instruccién variables. Esto tiene, evidentemente, implicaciones sobre la
complejidad del procesador e, indirectamente, sobre su velocidad, aun-
que extenderse mas sobre esto esta fuera del alcance del presente texto.

1.2.5. Modos de direccionamiento

Estudiando lo que se ha comentado hasta ahora acerca del funciona-
miento de un ordenador, se puede deducir que los operandos con que va
a trabajar una instruccién pueden residir en tres lugares: 1) en la pro-

5En realidad, el lenguaje ensamblador suele proporcionar més instrucciones que
las estrictamente soportadas por la arquitectura. Estas instrucciones adicionales, lla-
madas pseudo-instrucciones, y que facilitan la labor del programador, pueden dar
lugar a una o més instrucciones maquina.

1.2. El procesador, el niicleo del ordenador 14

Ensamblador Maquina Operacién

addwf 0xD9, f, c 26D9 Suma al acumulador el contenido de la direccién de
memoria 0xD9 del banco comun.

movf O0x17, w, c 5017 Copia en el acumulador el contenido de la direccién
de memoria 0x17 del banco comun.

bz +8 E004 Salta a la instrucciéon 8 posiciones después en me-

moria si el bit de estado Z es 1.

(a) Familia de procesadores PIC18 de 8 bits de microchip

Ensamblador Maéaquina Operacion

add r4, r5, r7 19EC Guarda en el registro r4 la suma de los contenidos
de los registros r5 y r7.

ldr r5, [r0, #44] 6AC5 Copia en el registro r5 el contenido de la direcciéon

de memoria formada sumando 44 al contenido del
registro ro.

beq #-12 DOFA Salta a la instruccion 12 posiciones antes en memo-
ria si el bit de estado Z es 1.

(b) Subconjunto Thumb de la arquitectura ARM

Ensamblador Maquina Operacién

addl $0x4000000, seax 0504000000 Suma al contenido del registro eax el valor constan-
te 0x400 0000.

movl -4(%ebp), %edx 8B55FC Copia en el registro edx el contenido de la direccién
de memoria formada restando 4 al contenido del
registro ebp.

je +91 745B Salta a la instruccion 91 posiciones después en me-
moria si el bit de estado Z es 1.

(c) Arquitectura Intel de 32 bits

Cuadro 1.1: Instrucciones de diferentes arquitecturas expresadas en ensamblador y en codigo
méquina (representado en hexadecimal), junto con una descripcién de la operacion realizada
por dichas instrucciones

1.2. El procesador, el niicleo del ordenador

15

Ensamblador Méquina Méquina en binario
addwf 0xD9, f, 26D9 0010 0110 1101 1001
movf Ox17, w, 5017 0101 0000 0001 0111
bz +8 E004 1110 0000 0000 0100

(a) Familia de procesadores PIC18 de 8 bits de microchip

Ensamblador Méquina Méquina en binario
add r4, , r7 19EC 0001 1001 11 100
ldr r5, [r0, #44] 6AC5 0110 1010 11 101
beq #-12 DOFA 1101 0000 1111 1010

(b) Subconjunto Thumb de la arquitectura ARM

Ensamblador Méquina Méquina en binario

addl $0x4000000, %eax 0504000000 0000 0101 0000 0100 0000 0000 0000 0000...
movl -4(), %edx 8B55FC 1000 1011 0101 O 1111 1100

je +91 745B 0111 0160 0161 1011

(c¢) Arquitectura Intel de 32 bits

Cuadro 1.2: Instrucciones de diferentes arquitecturas en ensamblador y en cédigo maquina
(representado en hexadecimal y en binario). Los colores identifican los distintos campos de

cada instruccion y los bits utilizados para codificar dichos campos en el c6digo maquina

pia instruccién®, 11) en registros del procesador y I11) en memoria’. Por
tanto, ademdas de conocer en qué campo se encuentra cada operando,
también es necesario saber como se codifica en dicho campo la direccién
efectiva en la que se encuentra el operando. Asi, el formato de instruc-
cién, ademds de especificar, como se ha visto previamente, los campos
en los que se dividen el conjunto de bits que forman la instruccién y
el tamano y contenido de cada campo, también indica cémo codificar
la direccion efectiva de cada uno de los operandos de la instruccién. Se
denomina direccion efectiva a la direccién que acaba calculando el
procesador y que indica la ubicacién del operando.

Las distintas formas en las que se puede indicar la direccién efectiva

5En el caso de que el operando esté en la propia instruccién, el dato referenciado
serd una constante y, por tanto, solo podré actuar como operando fuente

"Como en muchos procesadores las instrucciones acceden de la misma forma a la
entrada/salida que a la memoria, los datos podrian ubicarse igualmente en aquella.
De nuevo, esta posibilidad no se comenta explicitamente por simplicidad.

1.2. El procesador, el niicleo del ordenador

16

de un operando reciben el nombre de modos de direccionamiento.
Los modos de direccionamiento que referencian datos constantes o con-
tenidos en registros son sencillos. Por otro lado, los que se refieren a
datos almacenados en memoria son muy variados y pueden ser de gran
complejidad. A continuacion se describen los modos de direccionamien-
to més comunes, con las formas mas habituales, si bien no unicas, de
identificarlos.

El modo de direccionamiento inmediato —o literal, traduciendo la
nomenclatura utilizada en inglés—, es aquel en el que el operando estd
codificado en la propia instrucciéon. Puesto que una instruccién no es
un recurso de almacenamiento cuyo valor se pueda cambiar, sino un
dato inmutable, si un operando utiliza esta modo de direccionamiento,
se tratard siempre de un operando fuente. Por otro lado, el rango de
datos que se pueden especificar de esta forma depende del tamafio de
las instrucciones. En arquitecturas con instrucciones de tamafo variable,
como la Intel de 32 bits, el rango de valores puede ser muy grande,
como en la primera instruccién de esta arquitectura que aparece en
los Cuadros 1.1 y 1.2, en que la constante ocupa 4 bytes. En aquellas
arquitecturas en las que el tamafo de instruccién es fijo, el rango puede
estar limitado por un campo de 16, 8, 5 o incluso menos bits. Las ventajas
de este modo de direccionamiento son que el operando estd disponible
desde el mismo momento en el que se lee la instruccién y que no es
necesario dedicar un registro o una posicién de memoria para albergar
dicho operando.

El modo directo a registro (véase la Figura 1.3) indica que el
operando se encuentra en un registro de la arquitectura, pudiendo de
este modo usarse tanto para operandos fuente como destino. La primera
instruccién Thumb de los Cuadros 1.1 y 1.2 utiliza los registros r5y r7
como operandos fuente, y el registro r4, como destino; en la segunda
instruccién de las mostradas de Intel se utiliza el registro edx como
destino y en la primera, el registro eax a la vez como fuente y destino,
lo que es una caracteristica de esta arquitectura. Los registros de un
procesador suelen estar numerados internamente, lo que es evidente en
el lenguaje ensamblador de ARM y no tanto en el de Intel, aunque
realmente si lo estén —p.e., el registro edx es el registro 2, tal y como
se puede comprobar en la codificacién en binario de la instruccién—.
Una ventaja de usar registros como operandos es que la referencia a un
registro consume muy pocos bits del cédigo de instruccién comparado
con el tamano del operando contenido en el registro. Por ejemplo, dada
una arquitectura con 16 registros de 32 bits, referenciar a un operando
de 32 bits almacenado en uno de los 16 registros, consumiria tinicamente
4 bits de la instruccién.

El modo mas evidente de referirse a datos en memoria es el directo
a memoria o absoluto (véase la Figura 1.4). La instruccién incorpo-

1.2. El procesador, el niicleo del ordenador

17

Instruccién

Operando

Registros

Memoria

Figura 1.3: Modo de direccionamiento directo a registro. En este modo,
la direccién de efectiva del operando es uno de los registros de la arqui-
tectura. En la instruccion se codifica el nimero de registro en el que se
encuentra el operando

ra en el campo correspondiente la direccién de memoria del operando,
que puede ser fuente o destino. El consumo de bits de la instrucciéon de
este modo es muy elevado, por lo que es mas comin que se proporcione
en arquitecturas con tamamo de instrucciéon variable —la arquitectura
Intel lo incluye entre sus modos de direccionamiento—. No obstante,
también puede encontrarse en arquitecturas con tamano de instrucciéon
fijo, aunque en estos casos se aplican restricciones a la zona de memo-
ria accesible —como es el caso en la arquitectura PIC18—. A modo de
ejemplo, las dos primeras instrucciones de los Cuadros 1.1 y 1.2 tienen
sendos operandos que utilizan este modo. Los campos asociados a di-
chos operandos utilizan 8 bits para codificar una direccién de memoria,
si bien el procesador puede acceder a 4096 bytes, lo que requeriria en
realidad 12 bits. La arquitectura PIC18 divide logicamente la memoria
en bancos, y los 4 bits de mayor peso, que faltan para formar la direc-
cién, salen de un registro especial que identifica el banco activo. Para
proporcionar méas flexibilidad al programador a la hora de acceder a
memoria, un bit adicional de la instrucciéon permite indicar si el acceso
debe efectuarse en el banco activo o en un banco global comiin —las dos
instrucciones de los Cuadros 1.1 y 1.2 utilizan el banco comun, lo que se
indica en lenguaje ensamblador mediante la ¢ coloreada en naranja en
ambas instrucciones—.

El modo indirecto con registro (véase la Figura 1.5) permite refe-

1.2. El procesador, el niicleo del ordenador

18

Instruccién

- Direccién

Operando

Registros

Memoria

Figura 1.4: Modo de direccionamiento directo a memoria. En este modo,
la direccion efectiva del operando es una posicién de memoria. En la
instruccién se codifica la direcciéon de memoria en la que se encuentra el
operando

rirse a datos en memoria consumiendo tan solo los bits necesarios para
identificar un registro. En este modo, los bits de la instruccién indican
el nimero de un registro, cuyo contenido es la direccion de memoria en
la que se encuentra el operando, que puede ser fuente o destino. Debido
a lo compacto de este modo, que utiliza muy pocos bits para referirse a
datos en memoria, existen otros modos derivados de él méas versatiles y
que se adaptan a ciertas estructuras de datos en memoria habituales en
los lenguajes de alto nivel.

El mas comun de los modos de direccionamiento derivados del indi-
recto con registro es el modo indirecto con desplazamiento (véase la
Figura 1.6). En este modo, en la instruccién se especifica, ademés de un
registro —como en el caso del indirecto con registro—, una constante
que se suma al contenido de aquél para formar la direccién de memoria
en la que se encuentra el operando. Las segundas instrucciones de las ar-
quitecturas ARM e Intel presentes en los Cuadros 1.1 y 1.2 utilizan este
modo para sus respectivos operando fuente, sumando respectivamente
44 y —4 al contenido de sendos registros para obtener la direccién de
sus operandos fuente. Un caso especial de este modo es aquel en el que
el registro es el contador de programa. En este caso, a este modo se le
llama relativo al Contador de Programa y es muy utilizado en las
instrucciones de salto para indicar la direcciéon destino del salto.

Otra variacion del modo indirecto con registro es el modo indirec-

1.2. El procesador, el niicleo del ordenador

19

Instruccién

Operando

Registros

Memoria

Figura 1.5: Modo de direccionamiento indirecto con registro. En este
modo, la direccién efectiva del operando es una posicién de memoria.
En la instruccion se codifica un ntimero de registro, el contenido del cual
indica la direccién de memoria en la que se encuentra el operando

Instruccién

[[R[zom]

Operando

Registros

Memoria

Figura 1.6: Modo de direccionamiento indirecto con desplazamiento. En
este modo, la direccién efectiva del operando es una posicién de memo-
ria. En la instrucciéon se codifica el nimero de un registro y un dato
inmediato, la suma del contenido de dicho registro y el dato inmediato
proporciona la direccién de memoria en la que estd el operando

1.2. El procesador, el niicleo del ordenador

20

to con registro de desplazamiento, en el que en la instruccién se
especifican dos registros, la suma de los contenidos de los cuales da la
direccién de memoria en la que esta el operando. En algunos casos, el
contenido de uno de estos dos registros se multiplica® por el niimero de
bytes que ocupa el operando. Si este es el caso, el registro cuyo contenido
no se modifica se denomina base, y el otro, indice, por lo que este modo
se puede llamar también base mas indice o indexado.

Finalmente, cuando se tienen ambas cosas, dos registros y una cons-
tante, se tiene el modo base mas indice con desplazamiento. En
este ultimo, la direccion de memoria del operando se calcula sumando
el contenido de los dos registros, posiblemente multiplicando el indice
como se ha comentado anteriormente, mas la constante.

Por dltimo, algunas instrucciones se refieren a algunos de sus ope-
randos sin necesidad de indicar donde se encuentran estos en ninguno de
sus campos, dado que estan implicitos en la propia instruccién. Por ello,
este modo se direccionamiento se denomina implicito. Por ejemplo, las
dos primeras instrucciones de la arquitectura PIC18 de los Cuadros 1.1
y 1.2 utiliza el acumulador w sin que ninguno de los bits del cédigo ma-
quina de dichas instrucciones se refiera explicitamente a él, al igual que
ocurre en la primera instruccién de la arquitectura Intel, en la que el re-
gistro eax no es necesario codificarlo ya que esa instruccién utiliza dicho
registro de forma implicita.

La lista anterior, lejos de ser exhaustiva, presenta iinicamente los mo-
dos de direccionamiento méas importantes. Ademas de los vistos, existen
otros menos usados, algunos tan extranos como los modos doblemen-
te —e incluso infinitamente— indirectos de arquitecturas ya en desuso,
y otros mas comunes como los que incluyen incrementos y decrementos
automaticos de los registros que contienen direcciones de memoria, etcé-
tera. Se tienen también toda una serie de modos relativos al contador de
programa, utilizados sobre todo en instrucciones de control de flujo del
programa, pero también para acceder a datos en memoria. Concluyen-
do, los modos de direccionamiento, del tipo que sean, indican las formas
mediante las cuales se emplean ciertos bits de las instrucciones para que
el procesador pueda obtener los datos fuente o saber déonde almacenar
el destino de las operaciones.

1.2.6. Arquitectura y organizaciéon del procesador

El término arquitectura, que hemos utilizado con cierta frecuencia a
lo largo de este capitulo, cuando se utiliza en el contexto de los ordena-
dores, hace referencia a su modelo de funcionamiento. Més precisamente,

8Puesto que la multiplicacién que se requiere en este caso siempre es por una
potencia de dos, en lugar de una multiplicacién se realiza un desplazamiento a la
izquierda.

1.2. El procesador, el niicleo del ordenador

21

la arquitectura de un ordenador especifica su modo de comportarse
y funcionar de tal manera que sea posible realizar programas correctos
para ese ordenador. De manera andloga, la arquitectura de un pro-
cesador especifica como funciona un procesador incluyendo todos los
aspectos necesarios para poder realizar programas correctos en lengua-
je ensamblador. Aunque la arquitectura de un ordenador depende en
algunos aspectos de la del procesador —o procesadores— que incluya,
existen muchas diferencias entre ambas. Por ejemplo, asi como el espacio
de memoria direccionable viene fijado por la arquitectura del procesa-
dor, el mapa de memoria, que refleja la implementacion del subsistema
de memoria en un ordenador, se especifica en la de éste.

Siguiendo la definicién, centrada en el programador, que se ha dado,
la arquitectura de un procesador se llama también arquitectura del
conjunto de instrucciones o ISA —del inglés Instruction Set Archi-
tecture—. Exceptuando otras caracteristicas del procesador tales como
los modos de funcionamiento, la gestion de errores, excepciones e inte-
rrupciones, etcétera, que tienen que ver con el disefio y programacion
de sistemas, el conjunto de instrucciones es la manera mas completa y
objetiva de especificar como se comporta el procesador a la hora de eje-
cutar los programas y, por tanto, qué caracteristicas de él hay que tener
en cuenta al programarlo. A continuacion se presentan con mas detalle
estas caracteristicas fundamentales que definen la arquitectura del con-
junto de instrucciones. Como se verd, estan intimamente relacionadas
entre si, pues entre todas definen el funcionamiento del procesador.

En primer lugar se tienen los distintos tipos de instrucciones que
conforman el conjunto de operaciones que es capaz de realizar un pro-
cesador y que define en buena medida su arquitectura. Ademads de las
operaciones de transformacion, que vienen dadas por las unidades fun-
cionales, se tienen también los tipos y forma de los saltos, las maneras
de acceder a memoria y a la entrada/salida, etcétera.

Los tipos de datos con que trabaja el procesador son también una
parte importante de su arquitectura. Ademéas de los distintos tamanos
de enteros con que es capaz de operar, determina si trabaja con datos en
coma flotante o si es capaz de interpretar, mediante sus instrucciones,
otros formatos de datos.

Los registros de la arquitectura, su tamafio y su niimero, son
otro parametro fundamental. En particular, el tamano de los registros
define el de la arquitectura —de esta manera podemos hablar de una
arquitectura de 32 o 64 bits, por ejemplo— lo que ademas da una apro-
ximacién cualitativa de la potencia del procesador. El tamano de los
registros también marca, de una u otra forma, el espacio de direccio-
nes del procesador, pues las direcciones de memoria se almacenan en
registros durante la ejecucion de los programas. Por otro lado, un gran
nimero de registros permite realizar menos accesos a memoria; como

1.2. El procesador, el niicleo del ordenador

22

contrapartida, consume mas bits en las instrucciones que los utilizan en
sus modos de direccionamiento.

El formato de las instrucciones determina cémo se codifican las
instrucciones e indica, ademas de otras circunstancias, el niimero y ti-
po de operandos con que trabajan las arquitecturas. Las de acumulador
—por ejemplo, la PIC18— suelen especificar solo un operando en sus ins-
trucciones, dado que el otro es implicitamente el acumulador. Ademas,
uno de estos dos operandos es a la vez fuente y destino. De esta mane-
ra, el codigo puede ser muy compacto puesto que las instrucciones son
pequenas. Otras arquitecturas —como la Intel, que también mantiene
ciertas caracteristicas de arquitectura de acumulador— especifican solo
dos operandos siendo también uno de ellos fuente y destino a la vez.
Esto hace que las instrucciones sean pequenas, pero también conlleva
que siempre se modifique uno de sus operandos fuente. Las arquitectu-
ras RISC —es el caso de la ARM— suelen tener instrucciones de tres
operandos, siempre en registros —salvo en las instrucciones de acceso a
memoria, obviamente—. El c6digo resultante es de mayor tamaino, pero
a cambio, no obliga a sobreescribir el operando fuente en cada instruc-
cién.

Por 1ltimo, los modos de direccionamiento indican la flexibilidad
con que la arquitectura accede a sus operandos, sobre todo en memoria.
Tener una gran variedad de modos de direccionamiento da mucha ver-
satilidad, pero a costa de una mayor complejidad en el procesador y en
los formatos de instruccién, que en muchos casos deben ser de tamano
variable. Por contra, la restriccién a pocos modos de direccionamiento
requerird utilizar mas instrucciones cuando sea necesario efectuar los ti-
pos de accesos no directamente soportados —por ejemplo, cargar una
constante en un registro para acceder a una direccién de memoria reque-
rird dos o tres instrucciones—, sin embargo, esta restriccién simplifica
el disefio del procesador y facilita el disefio de formatos de instrucciéon
simples, de tamano fijo.

Como se ha visto, el conocimiento para programar en lenguaje en-
samblador un procesador, lo que define su arquitectura, se puede des-
glosar en cinco caracteristicas fundamentales. La arquitectura constituye
una especificacion del procesador necesaria para generar el codigo de los
programas y realizar aplicaciones tutiles con ellos. Pero esta especifica-
ciéon también sirve para disefiar los circuitos electrénicos digitales que
acaben implementando un procesador acorde con dicha arquitectura. El
tipo de estos circuitos y la forma en que se conectan e interactian entre
si para adaptarse a la arquitectura, se conoce como organizacion del
procesador. Una misma arquitectura puede implementarse mediante
distintas organizaciones, que daran lugar a procesadores mas rapidos,
mas econdémicos. . ., es decir, a distintas implementaciones de la misma
arquitectura.

1.2. El procesador, el niicleo del ordenador

23

1.2.7. Instrucciones y programas

La funcién de un ordenador y por tanto la de su procesador es la
ejecucién de programas de aplicacion que le doten de utilidad. En la
definicién de arquitectura se ha hablado explicitamente del lenguaje
ensamblador, sin embargo, hoy en dia es poco frecuente utilizar este
lenguaje para el desarrollo de aplicaciones, se utilizan los llamados len-
guajes de alto nivel. Las razones de este cambio son histéricas, ya que
en los origenes de la informética se disenaba el ordenador, incluyendo su
unidad central de proceso, y se utilizaba el lenguaje ensamblador propio
de dicho hardware para programarlo. A medida que fueron apareciendo
mas sistemas, comenzaron a desarrollarse los lenguajes de programacion
de alto nivel. Estos lenguajes permitian desarrollar programas que eran
independientes del hardware en el que se fueran a ejecutar, lo que per-
mitia que un mismo programa pudiera acabar ejecutandose en multitud
de plataformas. De hecho, la tendencia en el desarrollo de lenguajes de
programacion de alto nivel continué de tal manera que los procesado-
res, en particular sus conjuntos de instrucciones, se disenan desde hace
tiempo para adaptarse a las estructuras utilizadas en los lenguajes de
alto nivel.

Es especialmente interesante a este respecto la divisién, a partir de
los afios ochenta del siglo pasado, entre las arquitecturas CISC, Complex
Instruction Set Computer, y las mas sencillas RISC, Reduced Instruction
Set Computer. En un momento de la historia, los procesadores se com-
plicaron tanto para adaptarse a los lenguajes de programacion, que dejo
de ser posible reducir mas su ciclo de reloj. Entonces surgieron los pro-
cesadores RISC, que podian disefiarse con circuitos mas simples y ciclos
de reloj menores, ejecutando sus instrucciones en menos tiempo. Como
contrapartida, necesitaban ejecutar més instrucciones para realizar las
mismas tareas. A partir de ese momento dio comienzo una disputa entre
cual de las dos arquitecturas, CISC o RISC, constituia la mejor opcion
para disenar un procesador. Sea cual sea el resultado de esta disputa,
importe o no que exista un ganador, los conjuntos de instrucciones de
los procesadores basados en una u otra arquitectura se han pensado pa-
ra adaptarse, lo mejor posible dadas las restricciones de diseno, a los
lenguajes de alto nivel.

En la actualidad, el conocimiento de la arquitectura del conjunto de
instrucciones reside, mas que en un programador humano, en el compi-
lador de los lenguajes de alto nivel. Participando de este conocimiento,
veamos como los conjuntos de instrucciones se relacionan con los len-
guajes de programacion y con los programas.

Las instrucciones de transformacion determinan el conjunto de ope-
raciones que el procesador puede realizar directamente sobre los datos
propios de su arquitectura. Cualquier operacion que no se encuentre

1.2. El procesador, el niicleo del ordenador

24

en este conjunto, sea por la operacién en si, sea por los datos con que
trabaja, deberd efectuarse por programa mediante un conjunto de ins-
trucciones, con el consiguiente incremento en su tiempo de calculo. Los
lenguajes de alto nivel suelen incluir las operaciones basicas suma, resta,
multiplicacién y divisién, sobre datos de tipo entero y real. Los enteros
se codifican utilizando el complemento a dos y su rango se adapta al
tamano propio de la arquitectura. Los procesadores de gama baja, que
no disponen de unidades de multiplicacién o divisiéon incorporan, ade-
més de la ALU, una unidad de desplazamiento de bits. De esta manera,
las multiplicaciones y divisiones pueden implementarse facilmente uti-
lizando instrucciones de suma, resta y desplazamiento. Las operaciones
en coma flotante entre niimeros reales son mas costosas en tiempo de
ejecucién, pues requieren operar independientemente con los exponentes
y las mantisas. Por eso, la mayoria de los procesadores de propdsito ge-
neral incluyen unidades de operacién en coma flotante, que se adaptan
a los estandares establecidos tanto en el formato de los datos como en
la precisién de las operaciones. Estas unidades, que no solo realizan las
operaciones basicas sino también algunas funciones trascendentales, se
utilizan mediante un subconjunto bien diferenciado de instrucciones del
procesador que los compiladores utilizan de forma eficaz. Algunos pro-
cesadores incluyen otras unidades funcionales especializadas y, por lo
tanto, otros subconjuntos de instrucciones. Es mas complicado que los
compiladores genéricos puedan aprovechar estas instrucciones, que sue-
len utilizarse mediante funciones de biblioteca que si se han programado
en lenguaje ensamblador.

La evolucién de las unidades funcionales en los procesadores es mas
una consecuencia de los avances en las tecnologias de integracion que de
una adaptacion a los lenguajes de alto nivel. Aun asi, donde mas se ha
reflejado este seguimiento es en las formas de acceder a memoria que,
aunque pueden ser parte de todas las instrucciones con operandos en
memoria, se comenta a continuacién para el caso de las instrucciones de
transferencia de datos, junto con algunas caracteristicas de dichas ins-
trucciones. Las arquitecturas RISC suelen operar siempre con datos en
registros, siendo las instrucciones de transferencia las inicas que acceden
a datos en memoria, para llevarlos o traerlos a los registros. Este tipo de
arquitecturas se llaman de carga/almacenamiento. Como se ha visto al
inicio del capitulo, en general los datos residen en memoria y se llevan
a los registros para operar con ellos y almacenarlos temporalmente. Los
registros tienen un tamafo propio de la arquitectura que suele coincidir
con el de los enteros en los lenguajes de alto nivel. Sin embargo, los pro-
cesadores permiten trabajar con datos de otros tamafios y, del mismo
modo, las funciones de transferencia también permiten intercambiar al
menos datos de tamano byte —que se utilizan entre otras cosas para
representar caracteres de texto—. Cuando un dato de menor tamano

1.2. El procesador, el niicleo del ordenador

25

se lleva desde la memoria a un registro, las arquitecturas suelen dar la
posibilidad, mediante instrucciones distintas, de transferir rellenando el
resto con ceros —lo que responderia a datos sin signo— o mantener el
signo del dato de menor tamano —poniendo unos o ceros, en funciéon
del signo, lo que se conoce como extensién de signo—. De esta manera,
los conjuntos de instrucciones permiten a los lenguajes de programacion
trabajar con enteros de distintos tamanos.

Centrandonos por fin en los modos de direccionamiento, estos se han
diversificado para adaptarse a las estructuras de datos de los programas.
Vimos cémo el direccionamiento indirecto con registro permite acceder a
cualquier posicién de la memoria especificando simplemente un registro.
Al anadir un desplazamiento se permite que toda una regién de datos
de un programa, por ejemplo el conjunto de variables locales y para-
metros de una funcién, pueda ser accesible sin necesidad de cambiar el
valor del registro base, accediendo a cada variable individual mediante
su propio desplazamiento. Anadir un segundo registro, base mas indice,
da un direccionamiento 6ptimo para trabajar con vectores. El registro
base mantiene la direcciéon del inicio del vector y el indice selecciona el
elemento de forma similar a como se hace en un lenguaje de alto nivel.
Si la arquitectura permite ademés que el indice se multiplique segin el
tamano en bytes de los datos, un acceso a un vector requiere una tinica
instruccién en el lenguaje méquina. Afiadir un desplazamiento a este
modo permite intercambiar elementos dentro de un mismo vector apli-
cando un desplazamiento fijo, acceder a vectores de datos estructurados,
donde el desplazamiento selecciona un campo particular dentro de cada
elemento, etcétera.

Las instrucciones de control del flujo del programa o de salto son las
que permiten implementar las estructuras de control en los lenguajes de
alto nivel. Existen diversos criterios para clasificar las instrucciones de
salto. Uno de ellos las divide en relativas o absolutas segtn la direcciéon
de destino del salto sea relativo al contador de programa —es decir, un
operando de la instruccién es un valor que se suma o resta al contador
de programa—, o sea una direccién absoluta independiente de aquél.
Otro las diferencia en incondicionales o condicionales, segin el salto se
verifique siempre que se ejecute la instruccién de salto o solo cuando se
satisfaga cierta condicién. Esta condiciéon puede ser una operacion entre
registros que realiza la propia instruccién o una evaluaciéon de uno o
varios bits de estado del procesador —que a su vez se ven modificados
por los resultados de las operaciones ejecutadas previamente—. Las es-
tructuras de control suelen implementarse mediante saltos relativos al
contador de programa, tanto condicionales como incondicionales. Para
implementar una estructura iterativa —bucle for, while, etcétera— se
utiliza una instruccién de salto condicional que resta al contador de pro-
grama. De esta manera, si la condiciéon de permanencia en la estructura

1.3. Introduccion a los buses

26

de control es cierta, la ejecucién vuelve a una instruccién anterior, al ini-
cio del bucle. Las estructuras condicionales if-else se implementan con
saltos condicionales e incondicionales que suman al contador de progra-
ma. Un primer salto condicional dirige la ejecucién al codigo de una de
las dos alternativas, y un segundo salto incondicional evita que se ejecute
el codigo de esa alternativa en caso de que se haya ejecutado el corres-
pondiente a la otra. Por ultimo, existe en todas las arquitecturas un tipo
especializado de instrucciones de salto que permiten que los programas
se estructuren en subrutinas o funciones. Son instrucciones de salto que
suelen utilizarse emparejadas. Una de ellas, denominada llamada —-call,
en inglés— salta a un direccién, normalmente absoluta, y ademas guarda
en algin registro o en memoria, la direccién de la siguiente instruccién
—es decir, la que se habria ejecutado de no producirse el salto— llama-
da direccién de retorno. La segunda instruccién, llamada precisamente
de retorno, permite modificar el contador de programa, y por lo tanto,
saltar a una direccién almacenada en memoria o en un registro. De esta
manera, mediante la primera instruccién podemos llamar a una subruti-
na desde cualquier parte de un programa y, mediante la segunda, volver
a la instruccién siguiente al salto, puesto que la direccién de retorno
depende de la direccién de la instrucciéon que realiza la llamada. De es-
ta forma, la arquitectura de los procesadores provee instrucciones que
permiten ejecutar las estructuras mas utilizadas en los lenguajes de alto
nivel.

1.3. Introduccién a los buses

Un bus, en una primera aproximacién muy simple, es un conjunto de
conductores eléctricos por el que se intercambia informaciéon entre dos o
mas dispositivos electronicos digitales. La informacion que circula a tra-
vés del bus necesita de la participacién de todas las lineas conductoras,
que por ello, se consideran légicamente agrupadas en un tinico bus.

Profundizando y extendiendo un poco mas esta definicion, dado que
la finalidad de los buses es comunicar dispositivos, todos los que se co-
necten al mismo bus para intercambiar informacién deben adaptarse a la
forma en que dicha informacién se descompone entre las distintas lineas
conductoras y, ademads, en distintas etapas temporales de sincroniza-
cién, transmisiéon, recepcion, etcétera. Dicho de otro modo, para poder
intercambiar informacién a través de un bus, los dispositivos conecta-
dos a dicho bus deben adaptarse a un conjunto de especificaciones que
rigen el funcionamiento del bus y reciben el nombre de protocolo de
bus. De esta manera, podemos completar la definicién de bus diciendo
que es un conjunto de conductores eléctricos por el que se intercambia
informacién, mediante un protocolo adecuadamente especificado.

1.3. Introduccion a los buses

27

Como veremos en capitulos posteriores, los protocolos y otros as-
pectos que se tienen en cuenta en la especificacién de un bus —ntmero
de conductores, magnitudes eléctricas empleadas, temporizaciones, tipos
de informacion, etcétera— se extienden a varios niveles de abstraccion,
llegando, por ejemplo en el caso de los servicios de Internet?, al formato
de los mensajes que permiten la navegacién web. En esta introduccion
vamos a limitarnos al nivel mas sencillo de los buses que interconectan
el procesador con el resto del sistema, es decir, con la memoria y con los
dispositivos de entrada/salida.

Hemos comentado que el procesador genera todas las senales eléc-
tricas que sincronizan el funcionamiento del ordenador. De esta forma,
el bus principal del sistema es el bus que utiliza el procesador para in-
teractuar con el resto de elementos principales del ordenador. En los
ordenadores tipo PC actuales, cuyo bus principal es el PCI Express, es-
te se gestiona a través de un dispositivo puente conectado directamente
al del procesador, que se conoce como FSB —Front Side Bus—. Esto es
asi porque el procesador es el que inicia todas las transacciones del bus,
a las que los demas dispositivos responden. Esta situaciéon, utilizando la
terminologia propia de los buses, se define diciendo que el procesador es
el inico maestro del bus del sistema, del que todos los demés dispositivos
son esclavos'’.

Guiado por la ejecucién de instrucciones, el procesador solo debe
indicar al exterior, ademéas de la direccién a la que dirige el acceso, si
se trata de una lectura o una escritura y, posiblemente, el tamafio en
bytes de los datos a los que quiere acceder. En algunos sistemas tam-
bién serd necesario indicar si el acceso es a una direccién de memoria
o del subsistema de entrada/salida. Como vemos, el bus del procesador
necesita tres tipos de informacién para realizar un acceso: la direccion,
generada y puesta en el bus por el procesador; los datos, que los pondré
el procesador o la memoria —o algtn dispositivo de entrada/salida— en
el bus, segiin se trate de un acceso de escritura o de lectura; y algunas
sefiales de control para indicar las caracteristicas del acceso y para pau-
tar la sincronizacion de acuerdo con el protocolo del bus. Segin esto, en
los buses se diferencian tres tipos de lineas: direcciones, datos y control.
Las primeras permiten la selecciéon de los dispositivos sobre los que se
va a realizar el acceso; las de datos transfieren la informacién que se va
a intercambiar entre los distintos componentes; y las de control indican
como se lleva a cabo la transferencia. Todas las transacciones comienzan
con el envio de la direccion a las lineas del bus, asi como la activacién de

Internet especifica, entre otras cosas, protocolos para una red de comunicaciones.
Y una red es un tipo de bus.

10Fsto ya no es cierto en la mayor parte de sistemas. Para gestionar més eficazmen-
te la entrada/salida los dispositivos, en particular el DMA, también pueden actuar
como maestros del bus.

1.4. La memoria

28

las sefiales de control y sincronizacion necesarias para que se lleve a cabo
la operaciéon. De esta manera, los dispositivos, junto con la circuiteria
de decodificacién, tienen tiempo de que las sefiales eléctricas los activen
y se configuren para enviar o recibir datos, segun el tipo de acceso.

1.4. La memoria

La memoria principal es el dispositivo que, en la arquitectura von
Neumann, almacena las instrucciones y los datos de los programas en
ejecucién. Esta visién tan clara de la memoria es susceptible sin embar-
go de muchas confusiones debido, fundamentalmente, a dos razones. Por
una parte, porque la memoria es un dispositivo de almacenamiento al
igual que los discos duros, aunque estos sean almacenamiento secunda-
rio. Por otra parte, porque la memoria ha sido, desde el origen de los
ordenadores, un recurso escaso por su precio y lento en comparacion
con la velocidad del procesador, lo que ha llevado a concebir sistemas
complejos de uso de la memoria que afiaden confusién a la terminologia
y los conceptos.

Retomando los conceptos bésicos, la memoria principal es el dispo-
sitivo que almacena las instrucciones y los datos de los programas en
ejecucién, con los que trabaja el procesador. A través de su bus, el pro-
cesador genera accesos de lectura o escritura a los que la memoria —ol-
vidamos la entrada/salida en esta descripcién— responde entregando o
recibiendo datos. Siguiendo este modelo se puede ver que la estructu-
ra légica de la memoria es muy sencilla. La memoria es una coleccién
ordenada de recursos de almacenamiento, de manera que cada uno de
ellos estd identificado por su direccién. Cuando se realiza una lectura,
la memoria entrega el dato que tiene almacenado en la direccion que se
le haya indicado. En caso de una escritura, la memoria guarda el dato
que se le suministra en la direccién que se le haya proporcionado. Para
aproximar este modelo sencillo de la memoria a la realidad, basta con
definir qué datos almacena la memoria. En los sistemas actuales, y no
es previsible que cambie en afios, el elemento basico de almacenamiento
en memoria es el byte. De esta manera, cada direcciéon de memoria se
asocia con un byte y la unidad minima de lectura o escritura en memoria
es el byte. Sin embargo, el tamafio de las instrucciones y de los regis-
tros de la mayor parte de las arquitecturas es de varios —dos, cuatro u
ocho— bytes, lo que hace que la mayor parte de los accesos a memoria
sean a conjuntos de bytes, de un tamano u otro segun la arquitectura.
Manteniendo la visién légica de la memoria direccionable por bytes, los
buses de los procesadores suelen tener suficientes lineas de datos para
intercambiar a la vez tantos bits como tienen los registros de la arqui-
tectura. De esta manera, un acceso indica en el bus de direcciones la

1.4. La memoria

29

direccién del byte mas bajo en memoria y, mediante otras senales de
control, cuantos bytes de datos van a intervenir en el acceso. Esto hace
que las direcciones que aparecen en el bus sean siempre miltiplos del
numero maximo de bytes que se pueden leer en paralelo. Asi, si se quie-
re leer el niimero maximo de bytes en un solo acceso, debe hacerse en
una direccién que sea multiplo de este nimero. Si no se hace asi, se-
ria necesario efectuar una transaccién para la primera parte del dato y
otra para el resto. Este concepto se llama alineamiento de datos y se
define enunciando que los datos alineados en memoria deben comenzar
en una direccién multiplo de su tamano en bytes. Muchas arquitecturas
solo permiten accesos a datos alineados en memoria; otras no generan
un error en caso de datos desalineados, pero los accesos en este caso son
necesariamente mas lentos.

Cuando se va a almacenar en memoria un dato del procesador que
ocupa varios bytes, ademéas de los problemas de alineamiento que ya se
han comentado, se tiene la posibilidad de hacerlo de dos maneras distin-
tas. Si imaginamos un entero de n bytes como una cantidad expresada
en base 256 —recordemos que un byte, conjunto de 8 bits, al interpre-
tarlo como un nimero entero sin signo puede tener un valor entre 0 y
255— donde cada byte es un digito, podemos decidir escribir el de mayor
peso —el mas a la izquierda siguiendo con el simil de la cantidad— en
la direccién menor de las n que ocupa el entero, o en la mayor. Esta
decisién depende del procesador, no de la memoria, pero afecta a co-
mo se almacenan en ella los datos que se extienden por multiples bytes.
Las arquitecturas que se han ido desarrollando a lo largo de la historia
no se han decidido por ninguna de estas opciones y las han usado a
su albedrio, hasta tal punto que hoy en dia las arquitecturas no suelen
especificar ninguna en particular, y los procesadores pueden configurar
mediante algin bit si usan una u otra. Volviendo a ambas opciones, son
tan importantes en arquitectura de computadores que reciben cada una
su nombre particular. De este modo, si el byte de menor peso es el que
ocupa la direccién mas baja de memoria, la forma de almacenar los da-
tos se dice que es little endian, pues se accede a la cantidad por su
extremo menor. Si por el contrario, se sittia el byte de mayor peso en
la direccién mas baja, la forma de almacenamiento se denomina, conse-
cuentemente, big endian. A modo de ejemplo, la Figura 1.7 muestra
como se almacenaria una palabra de 4 bytes en la direccién de memoria
0x2007 0004 dependiendo de si se sigue la organizaciéon big endian o la
little endian.

Volviendo a la vision logica de la memoria, esta se considera un tni-
co bloque de bytes desde la direccién minima hasta la maxima, donde
el rango de direcciones depende del procesador. Este rango es funcion
de la cantidad de bits que componen la direccién que es capaz de emi-
tir el procesador cuando va a realizar un acceso a memoria. Por otro

1.4. La memoria

30

Palabra

B3 B2 B1 | BO

ox20070004 | B3 ox20070004 | BO
0x20070005 | B2 0x20070005 | B1
0x20070006 | B1 0x20070006 | B2
0x20070007 | BO 0x20070007 | B3
Memoria Memoria

Big endian Little endian

Figura 1.7: Los bytes de una palabra almacenada en la direccién de
memoria 0x2007 0004 se dispondran de una forma u otra dependiendo
de si se sigue la organizacién big endian o la little endian

lado, se sabe que en los sistemas hay distintos tipos de memoria, con
diferentes tecnologias y usos. En un ordenador podemos encontrar me-
moria no volatil, normalmente llamada ROM, aunque hoy en dia suele
ser de tecnologia Flash, que almacena el cédigo de arranque y otras ru-
tinas béasicas del sistema; una buena cantidad de memoria RAM para
los datos, el sistema operativo y los programas de aplicacién; direcciones
ocupadas por dispositivos de entrada/salida e incluso zonas de memoria
no utilizadas. Asi pues, la memoria direccionable de un ordenador estd
poblada por dispositivos de memoria de diferentes tecnologias e incluso
en algunos casos, por dispositivos de entrada/salida. Los sistemas reales
incorporan circuitos l6gicos de decodificacién que a partir de las lineas
de mayor peso del bus de direcciones generan senales de activacion que
se conectan a las entradas de seleccién —chip select— de los distin-
tos dispositivos para que respondan a los accesos del procesador. Esto
configura lo que se conoce como mapa de memoria del ordenador, que
configura el espacio de direcciones del procesador con los dispositivos
presentes en el sistema real.

1.4.1. Arquitecturas von Neumann y Harvard

Al principio del capitulo se describié el modelo de funcionamiento de
un ordenador segin la arquitectura von Neumann. Se indic6 asi mismo
que muchos ordenadores siguen hoy en dia la arquitectura Harvard, que
solo se distingue de la anterior en que mantiene dos memorias separadas,
una para instrucciones y otra para datos. La ventaja de esta arquitectura
tiene que ver con la velocidad en la ejecucion de las instrucciones, cuando
se hace de forma solapada —es decir, que una instruccién comienza sus
fases de ejecucién antes de que termine la anterior—. Con una memoria

1.4. La memoria

31

de instrucciones separada de la de datos, y por supuesto con buses de
acceso también separados, una instrucciéon puede estar accediendo a la
memoria de datos mientras la siguiente estd siendo adquirida de la me-
moria de instrucciones. Por supuesto, la arquitectura Harvard también
tiene inconvenientes con respecto a la von Neumann. Si la memoria de
datos es independiente de la de instrucciones, jcémo puede el procesa-
dor llevar los programas a la memoria, como ocurre cuando un sistema
operativo quiere ejecutar una nueva aplicaciéon que inicialmente reside
en disco?

Vistas estas disyuntivas, la realidad es que la mayor parte de los
procesadores de propésito general, y buena parte de los microcontrola-
dores —por ejemplo todos los de las familias PIC— implementan una
arquitectura Harvard y de esta manera pueden ejecutar las instruccio-
nes de forma solapada, y con mayor velocidad. La forma de llevar los
programas a memoria es bien distinta en ambos casos. La solucién de
los procesadores potentes de propdsito general es que las memorias se
mantienen separadas en la caché —que es una memoria de acceso muy
rapido que comentaremos brevemente en el siguiente apartado—. De es-
ta manera, la memoria principal es tinica, para datos e instrucciones, y
a este nivel se sigue la arquitectura von Neumann. Cuando el sistema
operativo va a ejecutar una nueva aplicacion lleva sus instrucciones a
la memoria principal comin. Cuando vaya a ejecutarse, el hardware del
sistema se encargara de copiar trozos de este programa en la caché de
instrucciones, antes de ejecutarlos siguiendo la arquitectura Harvard.

El caso de los microcontroladores es més sencillo, las memorias estan
totalmente separadas. Es més, la tecnologia de la memoria de datos es
RAM, mientras que la de instrucciones es Flash. De esta manera, los
programas se llevan a la memoria de instrucciones mediante un proceso
externo al procesador, que normalmente no debe modificar el cédigo.
Aun asi, en el caso en que el procesador tuviera que modificar el c6digo,
este es capaz de modificar bloques de la memoria de programa, tratando
la memoria como si fuera un dispositivo de entrada/salida.

1.4.2. Jerarquia de memoria

Ademas de la memoria caché que hemos introducido en el apartado
anterior, al sistema de memoria se asocia a menudo el disco o almace-
namiento secundario. Estos dos tipos de almacenamiento, junto con la
memoria principal, constituyen lo que se llama la jerarquia de memoria
de algunos sistemas.

La necesidad de organizar de esta manera un sistema de memoria se
ha insinuado anteriormente. Los procesadores son muy rapidos, y llenar
el mapa de memoria con grandes cantidades de memoria que permita
accesos a esas velocidades no es practico econémicamente. De hecho,

1.4. La memoria

32

la memoria principal de los ordenadores de propdsito general suele ser
RAM dindmica, varias veces mas lenta que el procesador. Para solucio-
nar este problema, que se conoce como el cuello de botella de la memoria,
se anadi6 la memoria caché. Esta memoria, que funciona a la misma ve-
locidad que el procesador, mantiene copias de los datos e instrucciones
de memoria principal que estdn siendo accedidos por el procesador con
mayor frecuencia. Cuando el procesador debe acceder a un dato o ins-
trucciéon que no se encuentra en la caché, copia de la memoria principal
no solo lo que necesita, sino toda la informacién cercana, que previsible-
mente necesitara en breve. Mediante esta técnica, y con tasas de acierto
en la caché superiores al 90 %, se consigue una mdxima del diseno de la
jerarquia de memoria: que la velocidad de todo el sistema de memoria
sea comparable a la del elemento méas rapido, en este caso la memo-
ria caché, y el tamafno al del elemento méas abundante, en este caso la
memoria principal.

La gestién de copia y reemplazo de elementos de memoria en la caché
se realiza por el hardware del procesador. De forma similar conceptual-
mente, pero gestionada por el sistema operativo, se tienen los mecanis-
mos de memoria virtual, que expanden el espacio de almacenamiento de
la memoria principal recurriendo al almacenamiento secundario. Cuando
una aplicaciéon que ocupa memoria lleva tiempo sin utilizar ciertos blo-
ques, estos son llevados a disco con lo que se libera espacio en memoria
para otros programas. De esta manera, la jerarquia de memoria se com-
pleta con el Ultimo elemento citado anteriormente, el almacenamiento
secundario.

En la actualidad, los procesadores con varios nucleos pueden incor-
porar dos o mas niveles de caché. El primero, el més rapido, es propio de
cada nucleo y separa datos e instrucciones implementado la arquitectura
Harvard. Los demés, mas lentos, suelen ser unificados y compartidos por
todos los ntcleos. A partir de ahi, el procesador se comunica a través
de su bus con una tnica memoria principal para datos e instrucciones,
segun la arquitectura von Neumann. En estos ordenadores se puede ins-
talar un sistema operativo con gestién de memoria virtual que utilice el
disco, completando asi la jerarquia de memoria.

Parte 11

Arquitectura ARM con
QtARMSIim

33

CArPiTULO

Primeros pasos con ARM y
QtARMSim

Indice
2.1. Introduccién al ensamblador Thumb de ARM . .. 35
2.2. Introduccién al simulador QtARMSim 41
2.3. Literales y constantes en el ensamblador de ARM . 55
2.4. Inicializacion de datos y reserva de espacio 58
2.5. Ejercicios oo oo 64

En este capitulo se introduce el lenguaje ensamblador de la arqui-
tectura ARM y la aplicacion QtARMSim.

En cuanto al lenguaje ensamblador de ARM, lo primero que hay
que tener en cuenta es que dicha arquitectura proporciona dos juegos
de instrucciones diferenciados. Un juego de instrucciones estandar, en
el que todas las instrucciones ocupan 32 bits, y un juego de instruccio-
nes reducido, llamado Thumb, en el que la mayoria de las instrucciones
ocupan 16 bits. De hecho, uno de los motivos por el que la arquitectura
ARM ha acaparado el mercado de los dispositivos empotrados ha sido
justamente por proporcionar el juego de instrucciones Thumb. Si se uti-
liza dicho juego de instrucciones, es posible reducir practicamente a la
mitad el tamano de los programas, lo que permite disefiar dispositivos
con menores requisitos de memoria, con lo que se disminuye su coste de
fabricacion, a la vez que se mejora su rendimiento al reducir los accesos
a memoria.

Para generar cédigo maquina a partir del ensamblador de ARM, ya

34

2.1. Introduccién al ensamblador Thumb de ARM

35

sea con el juego de instrucciones de 32 bits o con el Thumb, se puede
optar por dos convenios para escribir el cédigo en ensamblador: el pro-
pio de ARM y el de GNU!. Aunque la sintaxis de las instrucciones seréd
similar independientemente de qué convenio se siga, la sintaxis de la par-
te del cédigo fuente que describe el entorno del programa —directivas,
comentarios, etc.— es totalmente diferente en ambos.

Asi, para programar en ensamblador para ARM es necesario tener
en cuenta en qué juego de instrucciones —estandar o Thumb— se quiere
programar, y qué convenio de ensamblador se quiere utilizar —ARM o
GNU—. En este libro se utiliza el juego de instrucciones Thumb y el
convenio del ensamblador de GNU, puesto que son los utilizados por
QtARMSim.

Por su parte, QtARMSim es una interfaz grafica para el motor de
simulaciéon ARMSim?. Proporciona un entorno de simulacién de ARM
multiplataforma, facil de usar y que ha sido disenado con el objetivo de
ser utilizado en cursos de introduccién a la arquitectura de computado-
res. QtARMSim y ARMSim se distribuyen bajo la licencia libre GNU
GPL v3+ y pueden descargarse gratuitamente desde la siguiente pagina
web: «http://lorca.act.uji.es/project/qtarmsimy.

El resto del capitulo estd organizado como sigue. El primer aparta-
do realiza una breve introduccién al ensamblador Thumb de ARM. El
segundo describe la aplicaciéon QtARMSim. Los siguientes dos aparta-
dos proporcionan informacién sobre ciertas caracteristicas y directivas
del ensamblador de ARM que seran utilizadas frecuentemente a lo largo
del libro. En concreto, el Apartado 2.3 muestra como utilizar literales y
constantes; y el Apartado 2.4 cémo inicializar datos y reservar espacio
de memoria. Finalmente, se proponen una serie de ejercicios.

2.1. Introduccion al ensamblador Thumb de
ARM

Aunque conforme vaya avanzando el libro se irdn mostrando mas
detalles sobre la sintaxis del lenguaje ensamblador Thumb de ARM, es
conveniente familiarizarse cuanto antes con algunos conceptos béasicos
relativos a la programacién en ensamblador.

De hecho, antes de comenzar con el lenguaje ensamblador propiamen-
te dicho, conviene tener claras las diferencias entre «cdédigo méquinay y
«lenguaje ensambladory. El c6digo maquina es el lenguaje que entien-
de el procesador. Una instrucciéon en cédigo méquina es una secuencia

1GCC, the GNU Compiler Collection. https://gcc.gnu.org/
2 ARMSim es un motor de simulacién de ARM desarrollado por German Fabregat
Llueca, se distribuye conjuntamente con QtARMSim.

http://lorca.act.uji.es/project/qtarmsim
https://gcc.gnu.org/

2.1. Introduccién al ensamblador Thumb de ARM

36

de ceros y unos que constituyen un cédigo que el procesador —la méaqui-
na— es capaz de reconocer como una instruccién y, por tanto, ejecutar.
Por ejemplo, un procesador basado en la arquitectura ARM reconoceria
el c6édigo dado por la secuencia de bits 0001100010001011, como una
instruccién maquina que forma parte de su repertorio de instrucciones y
que le indica que debe sumar los registros r1 y r2 y almacenar el resul-
tado de dicha suma en el registro r3 (es decir, 3 < r1+72, en notacién
RTL).

Notacion RTL

La notacion RTL —del inglés Register Transfer Language— permi-
te describir las operaciones llevadas a cabo por las instrucciones
maquina de forma genérica. Lo que permite evitar la sintaxis pro-
pia de una arquitectura determinada. A continuacién se describen
los principales aspectos de la notaciéon RTL utilizada en este libro.
Para referirse al contenido de un registro, se utilizara el nombre
de dicho registro. Asi, cuando se describa una operacion, r4 hara
referencia en realidad al contenido del registro r4, no al registro
en si.

Para indicar el contenido de una posicion de memoria, se utiliza-
ran corchetes. Asi, [0x20000004] haréd referencia al contenido de
la direccién de memoria 0x20000004. De igual forma, [r4] tam-
bién hara referencia al contenido de una direcciéon de memoria, la
indicada por el contenido de r4.

Para mostrar el contenido actual de un registro o de una posiciéon
de memoria, se utilizard el simbolo «=». Asi por ejemplo, se uti-
lizard «r4 = 20» para indicar que el contenido del registro r4 es
el namero 20.

Por iltimo, para indicar una transferencia de datos, se utilizara
el simbolo «<». Por ejemplo, para indicar que la direcciéon de me-
moria 0x2000 0004 se debe sobreescribir con la suma del contenido
del registro r4 mas el namero 1, se utilizara la siguiente expresion:
«[0x2000 004] <— r4 + 1».

Como se vio en el capitulo anterior, cada instruccién maquina codifi-
ca, por medio de los distintos bits que forman la instruccion, la siguiente
informacién: 1) la operacién que se quiere realizar, 11) los operandos con
los que se ha de realizar la operacién y 111) el operando en el que se ha
de guardar el resultado. Es facil deducir pues, que la secuencia de bits
del ejemplo anterior, 0001100010001011,, seria distinta en al menos uno
de sus bits en cualquiera de los siguientes casos: 1) si se quisiera realizar
una operacién que no fuera la suma, 11) si los registros fuente no fueran
los registros rly r2, o 111) si el operando destino no fuera el registro r3.

2.1. Introduccién al ensamblador Thumb de ARM

37

Teniendo en cuenta lo anterior, un programa en cédigo maqui-
na no es mas que un conjunto de instrucciones maquina, y de datos,
que cuando son ejecutadas por el procesador realizan una determina-
da tarea. Como es facil de imaginar, desarrollar programas en c6digo
maquina, teniendo que codificar a mano cada instruccién mediante su
secuencia de unos y ceros correspondiente, es una tarea sumamente ar-
dua y propensa a errores. No es de extranar que tan pronto como fue
posible, se desarrollaran programas capaces de leer instrucciones escritas
en un lenguaje més cercano al humano para codificarlas en los unos y
ceros que constituyen las correspondientes instrucciones maquina. Asi,
el lenguaje de programaciéon que representa el lenguaje de la méaquina,
pero de una forma mas cercana al lenguaje humano, recibe el nombre
de lenguaje ensamblador. Este lenguaje permite escribir las instruc-
ciones méaquina en forma de texto. Asi pues, la instruccién maquina del
ejemplo anterior, 0001100010001011,, se escribiria en el lenguaje ensam-
blador Thumb de ARM como «add r3, rl, r2». Lo que obviamente es
mas facil de entender que 0001100010001011,, por poco inglés que sepa-
mos.

Aunque el lenguaje ensamblador es mas asequible para nosotros que
las secuencias de ceros y unos, sigue estando estrechamente ligado al
hardware en el que va a ser utilizado. Para hacernos una idea de cuan
relacionado estd el lenguaje ensamblador con la arquitectura a la que
representa, basta con ver que incluso en una instrucciéon tan basica co-
mo «add r3, rl, r2», podriamos encontrar diferencias de sintaxis con
el lenguaje ensamblador de otras arquitecturas. Por ejemplo, la anterior
instruccién se debe escribir como «add $3, $1, $2» en el lenguaje en-
samblador de la arquitectura MIPS. Asi pues, el lenguaje ensamblador
entra dentro de la categoria de los lenguajes de programacién de
bajo nivel, ya que estd fuertemente relacionado con el hardware en el
que se va utilizar.

No obstante lo anterior, podemos considerar que los lenguajes en-
sambladores de las diferentes arquitecturas son mas bien dialectos, no
idiomas completamente diferentes. Aunque puede haber diferencias de
sintaxis, las diferencias no son demasiado grandes. Por tanto, una vez
que se sabe programar en el lenguaje ensamblador de una determinada
arquitectura, no cuesta demasiado adaptarse al lenguaje ensamblador
de otra arquitectura. Esto es debido a que las distintas arquitecturas
de procesadores no son en realidad tan radicalmente distintas desde el
punto de vista de su programaciéon en ensamblador.

Como ya se ha comentado, uno de los hitos en el desarrollo de la
computacion consistié en el desarrollo de programas capaces de leer un
lenguaje mas cercano a nosotros y traducirlo a una secuencia de instruc-
ciones maquina que el procesador fuera capaz de interpretar y ejecutar.
Uno de estos, el programa capaz de traducir lenguaje ensamblador a

2.1. Introduccién al ensamblador Thumb de ARM

38

co6digo maquina recibe el imaginativo nombre de ensamblador. Dicho
programa lee un fichero de texto con el cédigo fuente en ensamblador
y genera un fichero objeto con instrucciones en cédigo maquina que el
procesador es capaz de entender. Es facil intuir que una vez desarrollado
un programa capaz de traducir instrucciones en ensamblador a cédigo
maquina, el siguiente paso natural haya sido el de anadir més carac-
teristicas al propio lenguaje ensamblador con el objetivo de hacer més
facil la programacién. Asi pues, el lenguaje ensamblador no se limita
a reproducir el juego de instrucciones de una arquitectura en concreto
en un lenguaje mas cercano al humano, si no que también proporciona
una serie de recursos adicionales destinados a facilitar la programacién
en dicho lenguaje. Algunos de dichos recursos se muestran a continua-
cién, particularizados para el caso del lenguaje ensamblador de GNU
para ARM:

Comentarios. Permiten dejar por escrito qué es lo que estd haciendo
alguna parte del programa y mejorar su legibilidad sefialando las
distintas partes que lo forman. Si comentar un programa cuando
se utiliza un lenguaje de alto nivel se considera una buena préctica
de programacién, cuando se programa en lenguaje ensamblador es
practicamente obligatorio comentar el codigo para poder reconocer
de un vistazo qué estd haciendo cada parte del programa. El co-
mienzo de un comentario se indica por medio del caracter arroba,
«@y. Cuando el programa ensamblador encuentra el caracter «Qy
en el cédigo fuente, este ignora dicho cardcter y el resto de la linea
en la que estd. Aunque también es posible utilizar el cardcter «#»
para indicar el comienzo de un comentario, el caracter «#» tan
solo puede estar precedido de espacios. Asi que para evitar proble-
mas, es mejor utilizar siempre «@» para escribir comentarios de
una linea. En el caso de querer escribir un comentario que ocupe
varias lineas, es posible utilizar los delimitadores «/*» y «*/» para
marcar déonde empieza y acaba el comentario, respectivamente.

Pseudo-instrucciones. Extienden el conjunto de instrucciones dispo-
nibles para el programador. Las pseudo-instrucciones no pueden
codificarse en lenguaje maquina ya que no forman parte del reper-
torio de instrucciones de la arquitectura en cuestién. Son instruc-
ciones proporcionadas por el ensamblador para facilitar la pro-
gramacion en lenguaje ensamblador. Por tanto, es el programa
ensamblador el que se encarga de traducir automéaticamente cada
pseudo-instruccién por aquella instruccién maquina o secuencia de
instrucciones maquina que realicen la operacién asociada.

Etiquetas. Se utilizan para poder referenciar a la direccién de memo-
ria del elemento definido en la linea en la que se encuentran. Para

El término ensambla-
dor se refiere a un tipo
de programa que se en-
carga de traducir un fi-
chero fuente escrito en
un lenguaje ensambla-
dor, a un fichero obje-
to que contiene codigo
méquina, ejecutable di-
rectamente por el mi-
croprocesador.

" N
G 2R
N Q g

%
LV 3
S J

La etiqueta «mainy tie-
ne un significado es-
pecial para QtARM-
Sim: sirve para indicar
al motor de simulacién
cual es la primera ins-
trucciéon a ejecutar, que
puede no ser la primera
del cédigo.

https://es.wikipedia.org/wiki/Ensamblador

=W N

N O w»

2.1. Introduccién al ensamblador Thumb de ARM

39

declarar una etiqueta, ésta debe aparecer al comienzo de una li-
nea, estar formada por letras y nimeros y terminar con el caracter
dos puntos, «:», no pudiendo empezar con un nimero. Cuando el
programa ensamblador encuentra la definicién de una etiqueta en
el cédigo fuente, anota la direccién de memoria asociada a dicha
etiqueta. De esta forma, cuando mas adelante encuentre una ins-
truccion en la que se haga referencia a dicha etiqueta, sustituira la
etiqueta por un valor numérico, que puede ser directamente la di-
recciéon de memoria de dicha etiqueta o un desplazamiento relativo
a la direcciéon de memoria de la instrucciéon actual.

Directivas. Sirven para informar al ensamblador sobre como interpre-
tar el codigo fuente. Son palabras reservadas que el ensamblador
reconoce. Se identifican facilmente ya que comienzan con un punto.

Teniendo en cuenta lo anterior, una instruccion en lenguaje ensam-

blador suele tener la siguiente forma®:
Etiqueta: operacién operl, oper2, oper3 @ Comentario

El siguiente ejemplo de programa en ensamblador esta formado por
tres lineas. Cada linea de dicho programa contiene una instruccién (que
indica el nombre de la operacién a realizar y sus argumentos) y un
comentario (que comienza con el cardcter «@y»). En la primer linea,
ademas, se declara la etiqueta «Bucle», para que pueda ser utilizada
por otras instrucciones para referirse a dicha linea. En el ejemplo, di-
cha etiqueta es referenciada por la instruccién que hay en la tercera
linea. Cuando se ensamble dicho programa, el ensamblador traducira la
instruccién «bne Bucle» por la instrucciéon maquina «bne pc, #-8». Es
decir, sustituird, sin entrar por el momento en més detalles, la etiqueta
«Bucle» por un ntumero, el «-8».

Bucle: add r0, r0, rl @ Calcula Acumulador = Acumulador + Incremento
sub r2, #1 @ Decrementa el contador
bne Bucle @ Mientras no llegue a 0, salta a Bucle

En el siguiente ejemplo se muestra un fragmento de cédigo que cal-
cula la suma de los cubos de los ntiimeros del 1 al 10.

main: mov rO, #0 @ Total a O
mov rl, #10 @ Inicializa n a 10
loop: mov r2, rl @ Copia n a r2
mul r2, rl @ Almacena n al cuadrado en r2
mul r2, rl @ Almacena n al cubo en r2
add r@, r@, r2 @ Suma rO y el cubo de n

3Conviene notar que cuando se programa en ensamblador, no importa si hay uno
0 mas espacios después de las comas en las listas de argumentos. Asi, se puede escribir
indistintamente «operl, oper2, oper3» o «operl,oper2,oper3».

© 0 N O U ke W N =

=
= o

2.1. Introduccién al ensamblador Thumb de ARM

40

sub rl, rl1, #1 @ Decrementa n en 1
bne loop @ Salta a «loop» si n I=0

El anterior programa en ensamblador es sintdcticamente correcto e
implementa el algoritmo apropiado para calcular la suma de los cubos
de los nimeros del 1 al 10. Sin embargo, todavia no es un programa
que se pueda ensamblar y ejecutar. Por ejemplo, atiin no se ha indicado
dénde comienza el cédigo. Un programa en ensamblador estd compues-
to en realidad por dos tipos de sentencias: instrucciones, que daran
lugar a instrucciones méaquina, y directivas, que informan al progra-
ma ensamblador como interpretar el cédigo fuente. Las directivas, que
ya habiamos introducido previamente entre los recursos adicionales del
lenguaje ensamblador, se utilizan entre otras cosas para: 1) informar al
programa ensamblador de dénde se debe colocar el c6digo en memoria,
I1) reservar espacio de memoria para el almacenamiento de las variables
del programa, e 111) inicializar los datos que pueda necesitar el programa.

Para que el programa anterior pudiera ser ensamblado y ejecutado
en el simulador QtARMSim, seria necesario anadir la primera y la pe-
niltima de las lineas mostradas a continuaciéon (la dltima linea no es
estrictamente necesaria.)

02_cubos.s &
. text
main: mov rO, #0
mov rl, #10
loop: mov r2, rl
mul r2, rl
mul r2, rl
add r0, ro, r2
sub r1, rl1, #1
bne loop
stop: wfi
.end

Total a 0

Inicializa n a 10

Copia n a r2

Almacena n al cuadrado en r2
Almacena n al cubo en r2
Suma r0@ y el cubo de n
Decrementa n en 1

Salta a «loop» si n !=0

D ™ @ ™ ® ® @ @

La primera linea del cédigo anterior presenta la directiva «.texty.
Dicha directiva indica al ensamblador que lo que viene a continuacién
es el programa en ensamblador y que las instrucciones que lo forman
deberan cargarse en la zona de memoria asignada al cédigo ejecutable.
En el caso del simulador QtARMSim, esto implica que el cédigo que
vaya a continuaciéon de la directiva «.text» se cargue en la memoria
ROM, concretamente a partir de la direccién de memoria 0x0000 1000.

La peniltima de las lineas del c6digo anterior contiene la instruccién
«wfi». Dicha instruccién se usa para indicar al simulador QtARMSim
que debe concluir la ejecuciéon del programa en curso. Su uso es especi-
fico del simulador QtARMSim. Cuando se programe para otro entorno,

«.text»

«wfin

http://lorca.act.uji.es/libro/introARM2016/codigo/02_cubos.s

2.2. Introduccién al simulador QtARMSim

41

habra que averiguar cual es la forma adecuada de indicar el final de la
ejecucién en dicho entorno.

La tultima de las lineas del codigo anterior presenta la directiva
«.end», que sirve para senalar el final del médulo que se quiere en-
samblar. Por regla general, no es necesario utilizarla. En la practica,
tan solo tiene sentido hacerlo en el caso de que se quiera escribir algo
a continuaciéon de dicha linea de tal manera que ese texto sea ignorado
por el ensamblador.

> 2.1 Dado el siguiente ejemplo de programa ensamblador, identifica y
seniala las etiquetas, directivas y comentarios que aparecen en él.

02_cubos.s &

1 .text

2 [main: mov rO, #0 @ Total a @

3 mov rl, #10 @ Inicializa n a 10

4 | loop: mov r2, rl @ Copia n a r2

5 mul r2, rl @ Almacena n al cuadrado en r2
6 mul r2, rl @ Almacena n al cubo en r2
7 add r0, r0, r2 @ Suma r0 y el cubo de n

8 sub rl, rl, #1 @ Decrementa n en 1

9 bne loop @ Salta a «loop» si n !=0
10 | stop: wfi

11 .end

2.2. Introduccién al simulador QtARMSim

Como se ha comentado en la introduccién de este capitulo, QtARM-
Sim es una interfaz gréafica para el motor de simulacién ARMSim, que
proporciona un entorno de simulaciéon basado en ARM. QtARMSim y
ARMSim han sido disenados para ser utilizados en cursos de introduc-
cién a la arquitectura de computadores y pueden descargarse desde la
web: «http://lorca.act.uji.es/project/qtarmsimy.

2.2.1. Ejecucion, descripcion y configuracién

Para ejecutar QtARMSim, basta con pulsar sobre el icono corres-
pondiente o ejecutar la orden «gtarmsimy.

La Figura 2.1 muestra la ventana principal de QtARMSim cuando
acaba de iniciarse. La parte central de la ventana principal correspon-
de al editor de cédigo fuente en ensamblador. Alrededor de dicha parte
central se distribuyen una serie de paneles. A la izquierda del editor se

«.end»

http://lorca.act.uji.es/libro/introARM2016/codigo/02_cubos.s
http://lorca.act.uji.es/project/qtarmsim

2.2. Introduccién al simulador QtARMSim 42
encuentra el panel de registros; a su derecha, el panel de memoria; y
debajo, el panel de mensajes. Los paneles de registros y memoria inicial-
mente estdn desactivados —estos paneles se describen méas adelante—.
El panel de mensajes muestra mensajes relacionados con lo que se va-
ya haciendo: si el cédigo se ha ensamblado correctamente, si ha habido
errores de sintaxis, qué linea se acaba de ejecutar, etc.

TR untitled.s - Qt ARMSIim Y & &
File Edit Wiew Run Help

EE D@ ot @ Cl@

Reqgisters o ¥ 1 N Memory o X
Register iValue ; Address iValue

Source Code | ARMSIm
Messages & %

Qt ARMSim version 0.2.2

(c) 2014 Sergio Barrachina Mir

Based on the graphical frontend for Spim developed on 2008 by Gloria Edo Pifiana.
Developed at the Jaume | University, Castellén, Spain

Figura 2.1: Ventana principal de QtARMSim

Si se acaba de instalar QtARMSim, es probable que sea necesario mo-
dificar sus preferencias para indicar cémo llamar al simulador ARMSim
y para indicar dénde estd instalado el compilador cruzado de GCC para
ARM. Para mostrar el cuadro de didlogo de preferencias de QtARMSim
(véase la Figura 2.2) se debe seleccionar la entrada «Preferences...»
dentro del ment «Edit». En dicho cuadro de didlogo se pueden obser-
var dos paneles. El panel superior corresponde al motor de simulacién
ARMSim y permite configurar el nombre del servidor y el puerto que
se utilizardan para conectar con él, la linea de comandos para ejecutar-
lo y su directorio de trabajo. Generalmente no serd necesario cambiar
la configuraciéon por defecto de este panel. Por otro lado, el panel infe-
rior corresponde al compilador cruzado de GCC para ARM. En dicho
panel se puede indicar la ruta al ejecutable del compilador cruzado de

Flags:

;Mostrar el cuadro de

dialogo
cias?

de

preferen-

2.2. Introduccién al simulador QtARMSim

43

GCC para ARM vy las opciones de compilaciéon que se deben pasar al
compilador. En el caso de que QtARMSim no haya podido encontrar
el ejecutable en una de las rutas por defecto del sistema, serd necesario
indicarla en el campo correspondiente.

@ e Qt ARMSim Preferences & &

ARMSIm
ARMSim
Server localhost
Puerto 8010 £
Command line | ruby server.rb

ARMSim directory | fhomefbarrachidatos/aplicaciones/pygt/gtarmsim/gtarmsim/armsim

GCC ARM
Command line | /usr/bin/arm-unknown-linux-gnueabi-gcc

Opciones -mcpu=cortex-m1 -mthumb -c

Restore Defaults

& Aceptar @ Cancelar

Figura 2.2: Cuadro de didlogo de preferencias de QtARMSim

2.2.2. Modo de edicién

Cuando se ejecuta QtARMSim, este se inicia en el modo de edicién.
En este modo, como ya se ha comentado, la parte central de la ventana
es un editor de codigo fuente en ensamblador, que permite escribir el
programa en ensamblador que se quiere simular. La Figura 2.3 muestra
la ventana de QtARMSim en la que se ha introducido el programa en
ensamblador visto en el Apartado 2.1. Para abrir un fichero en ensam-
blador guardado previamente se puede seleccionar la opcién del ment
«File > Open...» o teclear la combinacién de teclas « CTRL+o». Conviene
tener en cuenta que antes de ensamblar y simular el cédigo fuente edi-
tado, primero habrd que guardarlo (ment «File > Savey, o «CTRL+s»),
ya que lo que se ensambla es el fichero almacenado en disco. Los cam-
bios que se hagan en el editor no afectaran a la simulacién hasta que se
guarden a disco.

2.2.3. Modo de simulacién

Una vez se ha escrito y guardado en disco un programa en ensambla-
dor, el siguiente paso es ensamblar dicho cédigo y simular su ejecucion.
Para ensamblar el codigo y pasar al modo de simulacién, basta con pul-
sar sobre la pestana «ARMSim» que se encuentra debajo de la seccién

=}
[
.

I

;Cambiar al modo de
simulacion?

2.2. Introduccién al simulador QtARMSim

44

FHEEIN® introsim-cubos.s - Qt ARMSim
File Edit Wiew Run Help
l!l H I—'J. &ﬂ (¥ L i @:’ @
i o %
Registers n s A Memory
Register Value 2main: mev 0, 0 @ Total a O Address
3 mov rl, #10 @ Inicializa n a 10
4 loop: mov 12, 1l @ Copia n a r2
5 mual 2, 1l @ Zlmac=na n al cuadrado =n 1
B mal 2, rl B Almacena noal cul =n rZ
T add r0, r0, r2 @ Suma [rD] y =1 cul de n
8 sub 11, rl, #1 @ Decrementa n =n 1
9 bne loop @ Salta a «loops =i n /=0
10 stop: wii
11 .end

Source Code | ARMSIm

Messages

Qt ARMSim version 0.2.2

(c) 2014 Sergio Barrachina Mir

Based on the graphical frontend for Spim developed on 2008 by Gloria Edo Pifiana.
Developed at the Jaume | University, Castellon, Spain

Ready

Figura 2.3: QtARMSim mostrando el programa «02_cubos.s»

central de la ventana principal. Cuando se pasa al modo de simulacion,
la interfaz grafica se conecta con el motor de simulacion ARMSim, quien
se encarga de realizar las siguientes acciones: 1) llamar al ensamblador
de GNU para ensamblar el c6digo fuente; 11) actualizar el contenido de la
memoria ROM con las instrucciones maquina generadas por el ensam-
blador; 111) inicializar, si es el caso, el contenido de la memoria RAM
con los datos indicados en el cédigo fuente; y, por ultimo, 1v) inicializar
los registros del computador simulado. Si se produjera algtin error al
intentar pasar al modo de simulacién, se mostrara un cuadro de didlogo
informando del error, se volverd automaticamente al modo de edicién y
en el panel de mensajes se mostraran las causas del error. Es de esperar
que la mayor parte de las veces, el error sea debido simplemente a un
error de sintaxis en el codigo fuente. La Figura 2.4 muestra la apariencia
de QtARMSim cuando esté en el modo de simulacién.

Si se compara la apariencia de QtARMSim cuando esta en el modo
de edicion (Figura 2.3) con la de cuando estd en el modo de simulacién
(Figura 2.4), se puede observar que al cambiar al modo de simulacién se
han habilitado los paneles de registros y memoria que estaban desacti-
vados en el modo de edicién. De hecho, si se vuelve al modo de ediciéon

Flags:

2.2. Introduccién al simulador QtARMSim 45

o @ (o introsim-cubos.s - Qt ARMSim & X

File Edit Wiew Run Help

EH D@ ow @ € @

Registers ° % Mermory e x
a[cxcoocioco] 0x2000 movs 10, #0 ; 2 main mot| &

Register ‘Value : [0x00001002] OxZ10A movs rl, #10 3 mo Address iValue e
v-General [0x00001004] Ox1COA adds r2, rl, %0 ; 4 loop nmo v~ ROM 0x00001000 D
ro 0x00000000 [0x00001006] 0x434A muls r2, rl, 12 ; 5 mu 0x00001000 0x210A2000
rl 0x00000000 [0x00001008] 0x4344 muls r2, rl, o mu 0x00001004 0x434A1C0A
r2 0300000000 [0x0000100A] Ox1880 adds r0, r0, r2 ; ad 0x00001008 0x1880434A
r3 0x00000000 [0x0000100C] 0x3901 subs rl, &l ; 8 sl 0x0000100C 0xD1F93901
r4 0x00000000 [0x0000100E] OxD1FS bne pc, #-14 ; 9 by 0x00001010 0x0D000BF30
r5 0300000000 [0x00001010] OxEF30 wfi 10 stop ! 0x00001014 0x00000000
r6 0x00000000 [0x00001012] 0x0000 movs 10, 10 0x00001018 0x00000000
r7 0x00000000 [0x00001014] 0x0000 movs 10, 10 0x0000101C 0x00000000
r8 0x00000000 - [0x00001016] 0x0000 movs 10, 10 0x00001020 0x00000000
r9 0x00000000 [0x00001018] 0x0000 movs 10, 10 0x00001024 0x00000000
rlo 0x00000000 [0x0000101A] 0x0000 movs 10, 10 ™ 0x00001028 0x00000000
rll 0x00000000 [0x0000101C] 0x0000 mows 0, r0 0x0000102C 0x00000000
ri2 0300000000 [0x000O101E] 0x0000 movs U, r0 0x00001030 0x00000000
rl3 (SP) 0x20070780 [0x00001020] O0x0000 movs t0, r0 0x00001034 0x00000000
rl4 (LR) 0x00000000 [0x00001022] 0x0000 movs 10, 10 0x00001038 0x00000000
rl5 (BC) 0x00001000 [0x00001024] 0x0000 movs 10, r0 0x0000103C 0x00000000

[Ox00001026] Ox0000 movs r0, r0 . v—RAM 0x%20070000
[0x00001028] 0x0000 movs 10, 10 ~ 0x20070000 0x00000000
.)< > 0x20070004 0x00000000
| 0x20070008 0x00000000 =
Source Code | ARMSim 0x2007000C 0x00000000 e
Messages <o x
Connected to ARMSim. ARMSim version info follows. o~
W10
{c) 2014 German Fabregat
ATC - Ul H
~
v

/home/barrachi/datos/publicaciones/libros/practARM/codigeofintrosim-cubos.s assembled.

Figura 2.4: QtARMSim en el modo de simulacion

pulsando sobre la pestana «Source Code», se podré ver que dichos pane-
les se desactivan automaticamente. De igual forma, si se vuelve al modo
de simulacién, volveran a activarse.

De vuelta en el modo de simulacién, el contenido de la memoria del
computador simulado se muestra en el panel de memoria. En la Figu-
ra 2.4 se puede ver que el computador simulado dispone en este ejemplo
de dos bloques de memoria: un bloque de memoria ROM que comienza
en la direcciéon 0x0000 1000 y un bloque de memoria RAM que comienza
en la direccion 0x2007 0000. También se puede ver cémo las celdas de
la memoria ROM contienen algunos valores distintos de cero (que co-
rresponden a las instrucciones maquina del programa ensamblado) y las
celdas de la memoria RAM estan todas a cero.

Por otro lado, el contenido de los registros del «r@» al «ril5» se
muestra en el panel de registros. El registro «r15» merece una mencién
especial, ya que se trata del contador de programa (PC, por las siglas
en inglés de Program Counter). Como se puede ver en la Figura 2.4, el PC
contiene en este caso a la direccién de memoria 0x0000 1000. Como se ha
comentado en el parrafo anterior, la direcciéon 0x0000 1000 es justamente
la direccién de memoria en la que comienza el bloque de memoria ROM

Flags: n z ¢ v

i Volver al modo de edi-
cién?

El contador de progra-
ma, PC, es un regis-
tro del procesador que
contiene la direccion de
memoria de la siguiente
instruccién a ejecutar.

https://en.wikipedia.org/wiki/Program_counter

2.2. Introduccién al simulador QtARMSim 46

del computador simulado, donde se encuentra almacenado el programa
en c6édigo maquina. Asi pues, el PC estd apuntando en este caso a la
primera instruccién presente en la memoria ROM, por lo que la primera
instruccién en ejecutarse sera justamente la primera del programa.
Puesto que los paneles del simulador son empotrables, es posible
cerrarlos de manera individual, reubicarlos en una posicién distinta, o
desacoplarlos y mostrarlos como ventanas flotantes. A modo de ejemplo,
la Figura 2.5 muestra la ventana principal del simulador tras cerrar los
paneles en los que se muestran los registros y la memoria. También es
posible restaurar la disposicién por defecto del simulador seleccionando ;Cémo restaurar la dis-
la entrada «Restore Default Layout» del ment «View» (o pulsando la Posicién por defecto?
tecla «F3»). Naturalmente, es posible volver a mostrar los paneles que
han sido cerrados previamente, sin necesidad de restaurar la disposicion
por defecto. Para hacerlo, se debe marcar en el mend «View», la entrada
correspondiente al panel que se quiere mostrar.

P ECTN introsim-cubos.s - Qt ARMSim & & >_<_.'
File Edit Wiew Run Help

EH 9@ on @ ¢

ﬂ)[cxoooowom 0x2000 movs rO, #0 main mov r0,
[0x00001002] OxZ210A movs rl, #10 ; 3 mov rl,
[0x00001004] Ox1COA adds r2, vl, =0 ; 4 loop mov rZ,

[0x00001006] 0x4342 muls 2, r1, @ ; 5 mul 1
[0x00001008] Ox4324A muls v, vl, rZ ; [mul ¥,
[0x0000100A] 0Ox1880 adds r0, r0, r2 ; add r0,

I

1

@

o @ Total a O -
1 @ Inicializa n a 10
1 @ Copia n a r2
! @ Almacena n al cuadrado en 1
1 @ Almacena n al cubo en r2
0, r: @ Suma [r0] y =1 cubo d= n
[0x0000100C] 0Ox3901 subs 11, =1 H B sub 1, #1 @ Decrementa n =n 1
[Ox0000100E] OxDI1F9 bne pc, #-14 9 bns i
[0x00001010] OxBF30 wfi ; 10 stop fi
[0x00001012] O0x0000 mowvs 10, 10
[0x00001014] 0x0000 mowvs 10,
[0x00001016] Ox0000 movs 10,
[0x00001018] O0x0000 mowvs ©0,
[0x0000101A] O0x0000 movs 10,
[0x0000101C] 0Ox0000 mowvs r0,
[0x0000101E] Ox0000 movs r0, 10

v

'

’

v

’

oo @ Salta a loops =i n != 0

[0x00001020] 0x0000 movs 10
[0x00001022] 0Ox0000 movs r0
[0x00001024] 0x0000 movs r0
[0x00001026] 0x0000 movs 10
[0x00001028] 0x0000 movs r0

”) 1< >
| Source Code | ARMSim

Messages ol

' Connected to ARMSim. ARMSim version info follows.

~
V1.0
(c) 2014 German Fabregat
ATC - Ul
"~
v

/home/barrachijdatos/publicaciones/libros/practARM/codigo/introsim-cubos.s assembled.

Flags: n z ¢ v

Figura 2.5: QtARMSim sin paneles de registros y memoria

En el modo de simulacion, cada linea de la ventana central muestra la
informacién correspondiente a una instruccién maquina. Esta informa-
cion se obtiene a partir del contenido de la memoria ROM, por medio de
un proceso que se denomina desensamblado. La informacién mostrada

2.2. Introduccién al simulador QtARMSim 47

para cada instruccién maquina, de izquierda a derecha, es la siguiente:

10

20
30

40

La direccién de memoria en la que estd almacenada la instruccién
magquina.

La instrucciéon maquina expresada en hexadecimal.
La instrucciéon maquina expresada en ensamblador.

La linea original en ensamblador que ha dado lugar a la instruccién
maquina.

Tomando como ejemplo la primera linea de la ventana de desensam-

blado de la Figura 2.5, su informacién se interpretaria de la siguiente
forma:

= La instruccion maquina estd almacenada en la direccién de memo-
ria Ox0000 1000.

s La instrucciéon maquina expresada en hexadecimal es 0x2000.
s La instruccién maquina expresada en ensamblador es «movs r@, #0».

s La instruccién maquina se ha generado a partir de la linea niime-
ro 2 del codigo fuente original cuyo contenido es:
«main: mov rO, #0 @ Total a O»

> 2.2 Abre el simulador, copia el siguiente programa, pasa al modo de

simulacién y responde a las siguientes preguntas.

02_suma.s =4

.text
main: mov r@, #2 @ ro <- 2
mov rl, #3 @rl <- 3

add r2, r0, rl1 @ r2 <- r0 + rl
stop: wfi

[N

2.2.1 Localiza la instruccién «mov r@, #2», jen qué direccion de
memoria se ha almacenado?

2.2.2 ;Coémo se codifica dicha instrucciéon maquina (en hexadeci-
mal)?

2.2.3 Localiza el nimero anterior en el panel de memoria.

2.2.4 Localiza la instrucciéon «mov rl, #3», jen qué direccion de
memoria se ha almacenado?

http://lorca.act.uji.es/libro/introARM2016/codigo/02_suma.s

N O Ot ke W NN =

2.2. Introduccién al simulador QtARMSim 48
2.2.5 ;Coémo se codifica dicha instruccién méquina (en hexadeci-
mal)?
2.2.6 Localiza el nimero anterior en el panel de memoria.
Ejecucién del programa completo
Una vez ensamblado el codigo fuente y cargado el cédigo maquina
en el simulador, la opcién mas sencilla de simulacion es la de ejecutar el ¢ o

programa completo. Para ejecutar todo el programa, se puede seleccio-
nar la entrada del meni «Run > Run» o pulsar la combinacién de teclas
«CTRL+F11».

La Figura 2.6 muestra la ventana de QtARMSim después de ejecu-
tar el codigo maquina generado al ensamblar el fichero «02_cubos.s».
En dicha figura se puede ver que los registros r0, rl, r2 y rl5 tienen
ahora fondo azul y estidn en negrita. Eso es debido a que el simulador
resalta aquellos registros y posiciones de memoria que son modificados
durante la ejecucion del cédigo maquina —no se ha resaltado ninguna
de las posiciones de memoria debido a que dicho programa no escribe en
memoria—. En este caso, la ejecucion del codigo maquina ha modificado
los registros r@, r1 y r2 durante el calculo de la suma de los cubos de
los ntimeros del 10 al 1. También ha modificado el registro ri15, el con-
tador de programa, que ahora apunta a la tltima instruccién maquina
del programa.

Una vez realizada una ejecuciéon completa, lo que generalmente se
hace es comprobar si el resultado obtenido es realmente el esperado. En
este caso, el resultado del programa anterior se almacena en el registro
ro. Como se puede ver en el panel de registros, el contenido del registro ro
es 0x00000BD1. Para comprobar si dicho niimero corresponde realmente
a la suma de los cubos de los ntimeros del 10 al 1, se puede ejecutar, por
ejemplo, el siguiente programa en Python3.

suma = 0

for num in range(1l, 11):
cubo = num * num * num
suma = suma + cubo

print("El resultado es: {}".format(suma))
print("El resultado en hexadecimal es: 0x{:08X}".format(suma))

Cuando se ejecuta el programa anterior con Python3, se obtiene el
siguiente resultado:

$ python3 codigo/02_cubos.py
El resultado es: 3025

2.2. Introduccién al simulador QtARMSim 49

o @ (o introsim-cubos.s - Qt ARMSim & X

File Edit Wiew Run Help

EH 9@ o nw € @

Registers o x E Mermory e x
[0xD0001000] Ox2000 movs r0, #0 2 main mo :

Register ‘Value : [0x00001002] Ox210& movs rl, #10 3 mo Address iValue e
v-General [0=x00001004] Ox1COA adds r2, r©l, #0 4 loop mo v—ROM 0x00001000 D
0 0X00000BD1 [0x00001006] Ox434A& muls r2, 1, 12 5 muil 0x00001000 O0x210A2000
rl 0x00000000 [0x00001008] 0x43424 muls r2, rl, 1 il 0x00001004 0x434A1C0A
r2 0x00000001 [0xD000100A] 0x1880 adds rU, r0, 1 ac 0x00001008 0x1880434A
r3 0x00000000 [0x0000100C] 0x3901 subs rl, =l 8 sl 0x0000100C 0xD1F93901
r4 0x00000000 [0x0000100E] OxD1F9 bne pc, #-14 3 b 0x00001010 0x0D000BF30
r5 0300000000 L> [0x00001010] OXBF30 wfi i 10 stop fi 0x00001014 0x00000000
r6 0x00000000 [0x00001012] 0x0000 movs r0, 10 0x00001018 0x00000000
r7 0x00000000 [0x00001014] 0x0000 movs r0, 10 0x0000101C 0x00000000
r8 0x00000000 - [0x00001016] O0x0000 movs ro, 10 0x00001020 0x00000000
r9 0x00000000 [0x00001018] O0x0000 movs ri, 10 0x00001024 0x00000000
rlo 0x00000000 [0x0000101A] 0x0000 movs r0, 10 ™ 0x00001028 0x00000000
rll 0x00000000 [0x0000101C] 0x0000 movs r0, 10 0x0000102C 0x00000000
ri2 0300000000 [0xDO0O101E] 0x0000 movs rU, U 0x00001030 0x00000000
rl3 (SP) 0x20070780 [0x00001020] 0x0000 movs ro, 10 0x00001034 0x00000000
rl4 (LR) 0x00000000 [0x00001022] 0x0000 movs o, 10 0x00001038 0x00000000
rl5 (PC) 0x00001010 [0x00001024] 0x0000 movs r0, 10 0x0000103C 0x00000000

[0=x00001026] Ox0000 movs r0, r0 = v—RAM 0x%20070000
[0x00001028] 0x0000 movs r0, 10 ~ 0x20070000 0x00000000
<[))< > 0x20070004 0x00000000
0x20070008 0x00000000 A
Source Code | ARMSim 0x2007000C 0x00000000 ¥
Messages <o x

() 2014 German Fabregat
ATC - UJl

/homefbarrachifdatos/publicaciones/libros/practARM/codigofintrosim-cubos.s assembled.
[0x00001010] OxBF30 wh
End of program reached.

Figura 2.6: QtARMSim después de ejecutar el cédigo maquina

El resultado en hexadecimal es: 0x00000BD1

El resultado en hexadecimal mostrado por el programa en Python
coincide efectivamente con el obtenido en el registro r@ cuando se ha eje-
cutado el c6digo maquina generado a partir de «02_cubos.s». Si ademas
de saber qué es lo que hace el programa «02_cubos.s», también se tiene
claro cémo lo hace, serd posible ir un paso mas alla y comprobar si los
registros rl y r2 tienen los valores esperados tras la ejecucién del pro-
grama. El registro rl se inicializa con el niimero 10 y en cada iteracion
del bucle se va decrementando de 1 en 1. El bucle dejarda de repetirse
cuando el valor del registro rl pasa a valer 0. Por tanto, cuando finalice
la ejecucion del programa, dicho registro deberia valer 0, como asfi es, tal
y como se puede comprobar en la Figura 2.6. Por otro lado, el registro
r2 se utiliza para almacenar el cubo de cada uno de los ntimeros del 10
al 1. Cuando finalice el programa, dicho registro deberia tener el cubo
del tltimo ntimero evaluado, esto es 13, y efectivamente, asf es.

> 2.3 Ejecuta el programa «02_suma.s» del ejercicio 2.2, jqué valores
toman los siguientes registros?

SO

Flags: n Z € v

2.2. Introduccién al simulador QtARMSim

50

ro r2

ri ris

Recargar la simulacion

Cuando se le pide al simulador que ejecute el programa, en realidad
no se le esta diciendo que ejecute todo el programa de principio a fin. Se
le esta diciendo que ejecute el programa a partir de la direcciéon indicada
por el registro PC, r15, hasta que encuentre una instrucciéon de paro,
«wfi», un error de ejecucién, o un punto de ruptura —mas adelante se
comentara qué son los puntos de ruptura—. Lo mas habitual sera que la
ejecucién se detenga por haber alcanzado una instruccién de paro, «wfi.
Si este es el caso, el PC se quedara apuntando a dicha instruccién. Por
lo tanto, cuando se vuelva a pulsar el boton de ejecuciéon, no sucederd
nada, ya que al estar apuntando el PC a una instruccién de paro, el
simulador ejecutara dicha instruccién, y al hacerlo, se detendrd, y por
tanto, el PC seguird apuntando a dicha instruccién. Asi que para poder
ejecutar de nuevo el codigo, o para iniciar una ejecucién paso a paso,
como se vera en el siguiente apartado, es necesario recargar previamente
la simulacién. Para recargar la simulacién se debe seleccionar la entrada
de meni «Run > Refreshy, o pulsar la tecla «F4».

Ejecucién paso a paso

Aunque la ejecuciéon completa de un programa pueda servir para
comprobar si el programa hace lo que se espera de él, no permite ver
con detalle como se ejecuta el programa. Tan solo se puede observar
el estado inicial del computador simulado y el estado al que se llega
cuando se termina la ejecucién del programa. Para poder ver qué es
lo que ocurre al ejecutar cada instruccion, el simulador proporciona la
opcion de ejecutar el programa paso a paso. Para ejecutar el programa
paso a paso, se puede seleccionar la entrada del mend «Run > Step Into»
o la tecla «F5».

La ejecucién paso a paso suele utilizarse para ver por qué un deter-
minado programa o una parte del programa no esté haciendo lo que se
espera de él. O para evaluar como afecta la modificacién del contenido
de determinados registros o posiciones de memoria al resultado del pro-
grama. A continuacién se muestra como podria hacerse ésto ultimo. La
Figura 2.7 muestra el estado del simulador tras ejecutar dos instruccio-
nes —tras pulsar la tecla «F5» 2 veces—. Como se puede ver en dicha
figura, se acaba de ejecutar la instruccion «movs rl, #10» y la siguien-
te instrucciéon que va a ejecutarse es «adds r2, rl, #0». El registro rl

2.2. Introduccién al simulador QtARMSim 51
tiene ahora el ntimero 10, 0x0000 000A en hexadecimal, por lo que al eje-
cutarse el resto del programa se calculara la suma de los cubos de los
nimeros del 10 al 1, como ya se ha comprobado anteriormente. Si en
. , . . . ,
este momento modlﬁcaramos dicho I'engtI'O para que tuviera el nimero
3, cuando se ejecute el resto del programa se deberia calcular la suma
de los cubos del 3 al 1 —en lugar de la suma de los cubos del 10 al 1—.
SL: -.R_, s introsim-cubos.s - Qt ARMSIim @ @ it [
File Edit Wiew Run Help
EH 9 0w €@
Reqgisters ° X Memory ° X
[0x00001000] Ox2000 movs ro, 0 2 main mo :
Register ivalue £ [0x00001002] 0x210& movs rl, #10 3 mo Address iValue s
v—General [> [0x00001004] 0x1COA adds r2, 1, #0 ; 4 loop mo v—ROM 0x00001000 D
0 0x00000000 [0x00001006] Ox434A muls r2, rl, r2 mil 0x00001000 0x210A2000
rl 0x0000000A [0x00001008] Ox434A muls 2, vl, 1 mul 0x00001004 0x434A1COA
r2 0x00000000 [0x0000100A] 0x1880 adds 0, 10, 1 ad 0x00001008 0x1880434A
r3 0x00000000 [0x0000100C] 0x3901 subs rl, %1 8 sl 0x0000100C 0xD1F93901
rd 0300000000 [0x0000100E] OxDIFY bne pc, #-14 bng 0x00001010 0x0000BF30
rs 0x00000000 [0x00001010] OxBF30 wfi 0 stop fi 0x00001014 0x00000000
ré 0x00000000 [0x00001012] 0x0000 movs r0, 10 0x00001018 0x00000000
r7 0300000000 [0x00001014] 0x0000 movs r0, 10 0x0000101C 0x00000000
rs 0x00000000 | [0x00001016] 0x0000 movs r0, 10 0x00001020 0x00000000
r9 0x00000000 [0x00001018] 0x0000 movs i, 10 0x00001024 0x00000000
rlo 0x00000000 [0x0000101RA] 0x0000 movs r0, 10 I 0x00001028 0x00000000
ril 0x00000000 [0x0000101C] 0x0000 movs r0, 10 0x0000102C 0x00000000
ri2 0x00000000 [0x0000101E] O0x0000 movs ro, 10 0x00001030 0x00000000
rl3d (SP) 0x20070780 [0x00001020] 0x0000 movs o, 10 0x00001034 0x00000000
rlda (LR) 0x00000000 [0x00001022] 0x0000 movs rU, U 0x00001038 0x00000000
rl5 (PC) 0x00001004 [0x00001024] 0x0000 movs ro, 10 0x0000103C 0x00000000
[0xD0001026] Ox0000 movs r0, 10 o v—RAM 0x20070000
[0x00001028] 0x0000 movs ri, t0 w 0x20070000 0x00000000
<) < > 0x20070004 0x00000000
_ 0x20070008 0x00000000 =
Source Code | ARMSIm 0%2007000C 0x00000000 ¥
Messages : ol

(c) 2014 German Fabregat
ATC - UJl

/home/barrachifdatos/publicaciones/libros/practARM/codigo/introsim-cubos.s assembled.
[0x00001000] 0x2000 movws r0, #0
[0x00001002] 0x210A movs rl, #10

i

Flags: n z ¢ v

Figura 2.7: QtARMSim después de ejecutar dos instrucciones

Para modificar el contenido del registro r1 se debe hacer doble clic
sobre la celda en la que estd su contenido actual (véase Figura 2.8),
teclear el nuevo niimero y pulsar la tecla «Retorno». El nuevo valor nu-
mérico? puede introducirse en decimal, en hexadecimal (si se precede de
«0x», p.e., «0x3»), o en binario (si se precede de «0b», p.e., «Ob1l1l»).
Una vez modificado el contenido del registro rl para que contenga el va-
lor 3, se puede ejecutar el resto del cédigo de golpe (mentt «Run > Runy),
no hace falta ir paso a paso. Cuando finalice la ejecucién, el registro ro

4También es posible introducir cadenas de como mucho 4 caracteres. En este caso
deberan estar entre comillas simples o dobles, p.e., "Hola". Al convertir los caracteres
de la cadena introducida a ntmeros, se utiliza la codificacién UTF-8 y para ordenar
los bytes resultantes dentro del registro se sigue el convenio Little- Endian. Si no has
entendido nada de lo anterior, no te preocupes. .. por ahora.

2.2. Introduccién al simulador QtARMSim

92

debera tener el valor 0x00000024, que en decimal es el nimero 36, que
efectivamente es 33 + 23 4 13.

Registers ° X

Register iValue

v-General
ro 0x00000000
3
r2 0x00000000
r3 0x00000000
rd 0x00000000
x5 0x00000000
r6 0x00000000
7 0x00000000
I8 0x00000000
pa:] 0x00000000
rlo 0x00000000
rll 0x00000000
rlz 0x00000000
rl3 (SP) 0x20070780
rld (LR) 0x00000000
rl5 (PC) 0x00001004

Figura 2.8: Edicién del registro rl

En realidad, existen dos modalidades de ejecuciéon paso a paso, la
primera de ellas, la ya comentada, ment «Run > Step Into», ejecuta
siempre una unica instruccién, pasando el PC a apuntar a la siguien-
te. La segunda modalidad tiene en cuenta que los programas suelen
estructurarse por medio de rutinas (también llamadas procedimientos,
funciones o subrutinas). Si el c6digo en ensamblador incluye llamadas a
rutinas, al utilizar el modo de ejecucién paso a paso visto hasta ahora
sobre una instruccién de llamada a una rutina, la siguiente instruccién
que se ejecutard sera la primera instrucciéon de dicha rutina. Sin em-
bargo, en ocasiones no interesa tener que ejecutar paso a paso todo el
contenido de una determinada rutina, puede ser preferible ejecutar la
rutina entera como si de una tnica instruccién se tratara, y que una vez
ejecutada la rutina, el PC pase a apuntar directamente a la instruccion
siguiente a la de la llamada a la rutina. De esta forma, seria facil para el
programador ver y comparar el estado del computador simulado antes
de llamar a la rutina y justo después de volver de ella. Para poder hacer
lo anterior, se proporciona una modalidad de ejecucién paso a paso lla-
mada «por encimay (step over). Para ejecutar paso a paso por encima,
se debe seleccionar la entrada del menti «Run > Step Over» o pulsar la
tecla «F6». La ejecucion paso a paso entrando (step into) y la ejecucién
paso a paso por encima (step over) se comportaran de forma diferente
unicamente cuando la instruccién que se vaya a ejecutar sea una ins-
truccién de llamada a una rutina. Ante cualquier otra instruccién, las
dos ejecuciones paso a paso haran lo mismo.

Una rutina es un frag-
mento de codigo que
puede ser llamado des-
de varias partes del
programa y que cuando
acaba, devuelve el con-
trol a la instruccion si-
guiente a la que le lla-
mo.

https://es.wikipedia.org/wiki/Subrutina

2.2. Introduccién al simulador QtARMSim

93

Puntos de ruptura

La ejecucion paso a paso permite ver con detenimiento qué es lo Un punto de ruptura
que est4 ocurriendo en una determinada parte del cédigo. Sin embargo, define un lugar en el
puede que para llegar a la zona del cédigo que se quiere inspeccionar con 44€¢ 5€ desea parar la

detenimiento haya que ejecutar muchas instrucciones. Por ejemplo, se
podria estar interesado en una parte del cédigo al que se llega después de
completar un bucle con cientos de iteraciones. No tendria sentido tener

ejecucién de un progra-
ma, con la intencién de
depurar dicho progra-

ma.
que ir paso a paso hasta conseguir salir del bucle y llegar a la parte del 7 oo
’ 1s , . T o
codigo que en realidad se quiere inspeccionar con mas detenimiento. Por P o “‘9)
, Aow
tanto, seria conveniente disponer de una forma de indicarle al simulador PR
que ejecute las partes del cédigo que no interesa ver con detenimiento y
que solo se detenga cuando llegue a aquella instruccion a partir de la cual
se quiere realizar una ejecucién paso a paso —o en la que se quiere poder
observar el estado del simulador—. Un punto de ruptura (breakpoint
en inglés) sirve justamente para eso, para indicarle al simulador que
tiene que parar la ejecucién cuando se alcance la instruccion en la que
se haya definido un punto de ruptura.
LHEEYR introsim-cubos.s - Qt ARMSim A 2%
File Edit Wiew Run Help
‘EH 9@ o ke ¢ @
Registers o x Mermory e x
[0xD0001000] Ox2000 movs r0, #0 2 main mo
Register ‘Value : [0x00001002] Ox210& movs rl, #10 3 mo Address ‘Value e
v—General ﬁ}[cxuuuuwuq] 0x1COA adds rz, rl, #0 ; 4 loop mo v—ROM 0x00001000 D
o 0x00000000 [0x00001006] Ox434A4 muls vz, 11, 12 5 mul 0x00001000 0x210A2000
rl 0x00000003 [0x00001008] Ox434A muls 2, tl, 12 muil 0x00001004 0x434A1C0A
r2 000000000 [0x0000100A] 0x1880 adds r0, r0, 12 ac 0x00001008 0x1880434A
r3 0x00000000 [0x0000100C] 0x3901 subs rl, =l 8 sul 0x0000100C 0xD1F93901
r4 0x00000000 @ [0x0000100E] 0xDI1F9 bne pc, #-14 9 b 0x00001010 0x0D000BF30
rs 0300000000 [0x00001010] OxBF30 wii 0 stop fi 0x00001014 0x00000000
r6 0x00000000 [0x00001012] O0x0000 movs ri, 10 0x00001018 0x00000000
r7 0x00000000 [0x00001014] 0x0000 movs r0, 10 0x0000101C 0x00000000
r8 0x00000000 - [0x00001016] 0x0000 movs ri, 10 0x00001020 0x00000000
r9 0x00000000 [0x00001018] O0x0000 movs ri, 10 0x00001024 0x00000000
rlo 0x00000000 [0x0000101A] O0x0000 movs o, 10 0x00001028 0x00000000
rll 0x00000000 [0x0000101C] 0x0000 movs r0, 10 0x0000102C 0x00000000
ri2 0300000000 [0xDO0O1O1E] 0x0000 movs rU, U 0x00001030 0x00000000
rl3 [SP) 0x20070780 [0x00001020] 0x0000 movs ro, 10 0x00001034 0x00000000
rl4 (LR) 0x00000000 [0x00001022] 0x0000 movs ri, 10 0x00001038 0x00000000
rl5 (PC) 0x00001004 [0x00001024] 0x0000 movs rU, U 0x0000103C 0x00000000
[0=x00001026] Ox0000 movs r0, r0 v— RAM 0x20070000
[0x00001028] 0x0000 movs ril, 10 0x20070000 0x00000000
<[) < > 0x20070004 0x00000000
0x20070008 0x00000000 A
Source Code | ARMSim 0%2007000C 0x00000000 ¥
Messages : < X

(c) 2014 German Fabregat
ATC - UJl

/home/barrachifdatos/publicaciones/libros/practARM/codigo/introsim-cubos.s assembled.
[0x00001000] 0x2000 mowvs ro, #0
[0x0D0001002] 0x210A movs rl, #10

 {m i |

Flags: n z ¢ v

Figura 2.9: Punto de ruptura en la direccién 0x0000 100E

Antes de ver cémo definir y eliminar puntos de ruptura, conviene

https://en.wikipedia.org/wiki/Breakpoint

2.2. Introduccién al simulador QtARMSim 54

tener en cuenta que los puntos de ruptura solo se muestran y pueden

editarse cuando se estd en el modo de simulacién. Para definir un punto

de ruptura, se debe hacer clic sobre el margen de la ventana de desen-

samblado, en la linea en la que se quiere definir. Al hacerlo, aparecerd

un circulo rojo en el margen, que indica que en esa linea se ha definido

un punto de ruptura. Para eliminar un punto de ruptura ya definido, se

debe proceder de la misma forma, se debe hacer clic sobre la marca del

punto de ruptura. A modo de ejemplo, la Figura 2.9 muestra la ventana

de QtARMSim en la que se han ejecutado 2 instrucciones paso a paso

y se ha anadido un punto de ruptura en la instruccién maquina que se

encuentra en la direccion de memoria 0x0000 100E. Por su parte, la Fi-

gura 2.10 muestra el estado al que se llega después de pulsar la entrada

de menu «Run > Runy». Como se puede ver, el simulador se ha detenido

justo en la instruccién marcada con el punto de ruptura (sin ejecutarla).

ot @ W introsim-cubos.s - Qt ARMSim &) & 5

File Edit Wiew PRun Help

EBH 9@ o nw € @

Registers o x : Memory o X
[0xD0001000] Ox2000 movs 10, #0 main mo _':

Register ‘Value H [0x00001002] OxZ10A movs rl, #10 3 mo Address ‘Value e
v—General [0=x00001004] Ox1COA adds r2, 1, #0 4 loop mo v—ROM 0x00001000 D
x0 0x0000001B [0x00001006] 0x434A muls 2, tl, 1 il 0x00001000 0x210A2000
rl 0x00000002 [0x00001008] Ox434A muls r2, rl, r2 mul 0x00001004 0x434A1C0A
r2 0x0000001B [0x0000100A] 0x1880 adds r0, r0, r2 ade 0x00001008 0x1880434A
r3 0x00000000 [0x0000100C] 0x38901 subs rl, #I 8 sul 0x0000100C 0xD1F93901
r4 0x00000000 > [0xD000100E] 0xDIF9 bne pe, #-14 i bng 0x00001010 0x0000BF30
rs 0x00000000 [0x00001010] OxBF30 wfi 0 stop i 0x00001014 0x00000000
r6 0x00000000 [0x00001012] 0x0000 movs r0, 10 0x00001018 0x00000000
r7 0x00000000 [0x00001014] 0x0000 movs r0, 10 0x0000101C 0x00000000
r8 0x00000000 | - [0x00001016] 0x0O00 movs ruU, U 0x00001020 0x00000000
r9 0x00000000 [0x00001018] 0x0000 movs r0, 10 0x00001024 0x00000000
rlo 0x00000000 [0x0000101R] 0x0000 movs r0, 10 u 0x00001028 0x00000000
ril 0300000000 [0x000O101C] 0x0O00 movs rU, U 0x0000102C 0x00000000
ri2 0x00000000 [0x0000101E] 0x0000 movs r0, 10 0x00001030 0x00000000
rl3d (SP) 0x20070780 [0x00001020] 0x0000 movs ri, 10 0x00001034 0x00000000
rld4 (LR) 0x00000000 [0x00001022] 0x0000 movs ri, 10 0x00001038 0x00000000
rl5 (PC) 0x0000100E [0x00001024] 0x0000 movs r0, 10 0x0000103C 0x00000000

[0x00001026] O0x0000 movs r0, 10 . v—RAM 0x%20070000
[0x00001028] 0x0000 movs ro, r0 v 0x20070000 0x00000000
<C_ s 1< > 0x20070004 0x00000000
0x20070008 0x00000000 A

Source Code || ARMSIm

Messages

0x2007000C 0x00000000

/home/barrachifdatos/publicaciones/libros/practARM/codigo/introsim-cubos.s assembled.
[0x00001000] 0x2000 mowvs ro, #0

[0xD0001002] 0x210A movs rl, #10

[0x0000100E] 0xD1FS bne pe, #-14

Breakpoint reached.

B mm i

Flags: n z € v

Figura 2.10: Programa detenido al llegar a un punto de ruptura

2.3. Literales y constantes en el ensamblador de ARM

95

2.3. Literales y constantes en el ensamblador
de ARM

Un literal es un ntimero (expresado en decimal, binario, octal o
hexadecimal), un cardcter o una cadena de caracteres que se indican
tal cual en el programa en ensamblador. En el ensamblador de ARM,
se indica que un determinado dato es un literal precediéndolo de un
caracter «#». En los apartados anteriores se han visto algunos ejemplos
de instrucciones que incluian datos literales. Por ejemplo, el «#2» de
la instruccién «mov r@, #2» indica que se quiere guardar un 2 en el
registro r0, es decir, en notacién RTL: 70 < 2. Ese 2 de la instrucciéon
«mov r@, #2» es un valor literal. Si en lugar de querer guardar un 2 se
hubiera querido almacenar otro niimero, p.e., un 42, se habria tenido
que utilizar una instruccién distinta, «mov r@, #42», puesto que el dato
literal forma parte de la propia instruccién.

Puesto que la representacion de un literal que se utiliza maés frecuen-
temente es la de un niimero en decimal, la forma de indicar un ntmero
en decimal es la méas sencilla de todas. Basta con anteponer, como ya se
ha comentado, el caracter «#» al nimero en decimal —la tnica precau-
ciéon que hay que tener es que el nimero no puede comenzar por 0—.
Por ejemplo, como ya se ha visto, la instruccién «mov r@, #2» guarda
un 2, especificado de forma literal y en decimal, en el registro ro.

Aunque especificar un dato en decimal es lo mas habitual, en oca-
siones es mas conveniente especificar dicho niimero en hexadecimal, en
octal o en binario. Para hacerlo, se debe empezar al igual que antes por
el caracter «#»; a continuacién, uno de los siguientes prefijos: «0x» pa-
ra hexadecimal, «0» para octal y «@b» para binario’; y, por tltimo, el
numero en la base seleccionada.

> 2.4 Fl siguiente c6digo muestra 4 instrucciones que inicializan los re-
gistros r@ al r3 con 4 valores numéricos literales en decimal, hexa-
decimal, octal y binario, respectivamente. Copia dicho programa
en QtARMSim, cambia al modo de simulacién y contesta las si-
guientes preguntas.

02_numeros.s =4

1 .text

2 | main: mov r@, #30 @ 30 en decimal

3 mov rl, #OX1E @ 30 en hexadecimal
4 mov r2, #036 @ 30 en octal

5Si has reparado en ello, los prefijos para el hexadecimal, el octal y el binario
comienzan por cero. Pero ademas, el prefijo del octal es simplemente un cero; es por
dicho motivo que cuando el ntimero literal esté en decimal, este no puede empezar
por cero.

http://lorca.act.uji.es/libro/introARM2016/codigo/02_numeros.s

2.3. Literales y constantes en el ensamblador de ARM

o6

5 mov r3, #0b00011110 @ 30 en binario
6|stop: wfi

2.4.1 Cuando el simulador desensambla el cédigo, ;qué ha pasado
con los niimeros? jestdn en los mismos sistemas de numera-
cién que el cédigo en ensamblador original?, jen qué sistema
de numeracién estan ahora?

2.4.2 Ejecuta paso a paso el programa, ;qué nimeros se van al-
macenando en los registros r@ al r37

Cambio de sistemas de numeracién con calculadora

Las calculadoras proporcionadas con la mayoria de sistemas ope-
rativos suelen proporcionar alguna forma de trabajar con distintos
sistemas de numeracién. Por ejemplo, en Windows se puede selec-
cionar la opcién del meni «Ver > Programador» de la calculadora
del sistema para realizar los cambios de base méas frecuentes. De
forma similar, en GNU/Linux se puede seleccionar la opcién del
menu «Preferencias > Modo sistema de numeracidény» de la cal-
culadora «kcalc» para convertir un nimero entre los distintos
sistemas de numeracion. En ambos casos, basta con indicar el
sistema de numeraciéon en el que se va a introducir un ntmero
—entre hexadecimal, decimal, octal o binario—, introducirlo y
cambiar el sistema de numeracién. Al hacerlo, se mostrara dicho
nimero en la nueva base.

Ademaés de literales numéricos, como se ha comentado anteriormen-
te, también es posible incluir literales alfanuméricos, ya sea caracteres
individuales o cadenas de caracteres. Para especificar un cardcter de for-
ma literal, este se entrecomilla entre comillas simples® y se precede de
«#», p.e., «<mov r@, #'L’». Sien lugar de querer especificar un caracter,
se quiere especificar una cadena de caracteres’, entonces se debe utili-
zar el prefijo «#» y entrecomillar la cadena entre comillas dobles. Por
ejemplo, «#"Hola mundo!"».

SEn realidad basta con poner una comilla simple delante: «#'A’» y «#'A» son
equivalentes.

"Puesto que la instruccién en ensamblador «mov rd, #0ffset8» tan solo puede
escribir el byte indicado por 0ffset8 en el registro rd, no es posible indicar en dicha
instruccién una cadena de caracteres, ya que la cadena de caracteres ocupard més de
un byte, y el registro destino tan solo puede almacenar 4 bytes. Asi pues, se dejan para
més adelante los ejemplos de cémo utilizar los literales de cadenas en un programa
en ensamblador.

© 0 N O U kW NN =

2.3. Literales y constantes en el ensamblador de ARM

o7

Otra herramienta que proporciona el lenguaje ensamblador para fa-
cilitar la programacién y mejorar la lectura del cdédigo fuente es la po-
sibilidad de utilizar constantes. Por ejemplo, supongamos que se estd
realizando un cédigo que va a trabajar con los dias de la semana. Dicho
codigo utiliza niimeros para representar los niimeros de la semana. El 1
para el lunes, el 2 para el martes y asi, sucesivamente. Sin embargo, el
codigo en ensamblador seria mucho maés facil de leer y de depurar si
en lugar de ntimeros se utilizaran constantes para referirse a los dias
de la semana. Por ejemplo, «Monday» para el lunes, «Tuesday» para el
martes, etc. De esta forma, podriamos referirnos al lunes con el literal
«#Monday» en lugar de con «#1». Naturalmente, en alguna parte del cédi-
go se tendria que especificar que la constante « Monday» debe sustituirse
por un 1 en el cédigo, la constante «Tuesday» por un 2, y asi sucesiva-
mente. Para declarar una constante se utiliza la directiva «.equ» de la
siguiente forma: «.equ Constant, Value»®. El siguiente programa mues-
tra un ejemplo en el que se declaran y utilizan las constantes «Monday»
y «Tuesday».

02_dias.s &
.equ Monday, 1
.equ Tuesday, 2

Q ...
.text

main: mov r0@, #Monday
mov rl, #Tuesday
Q...

stop: wfi

Por 1ltimo, el ensamblador de ARM también permite personalizar
el nombre de los registros. Esto puede ser 1til cuando un determinado
registro se vaya a utilizar en un momento dado para un determinado
propésito. Para asignar un nombre a un registro se puede utilizar la
directiva «.req» y para desasociar dicho nombre, la directiva «.unreq».
Por ejemplo:

02_diasreg.s &
.equ Monday, 1
.equ Tuesday, 2
@ ...

8En lugar de la directiva «.equy», se puede utilizar la directiva «.sety» —am-
bas directivas son equivalentes—. Ademds, también se pueden utilizar las directivas
«.equivy y «.eqv», que ademas de inicializar una constante, permiten evitar errores
de programacion, ya que comprueban que la constante no se haya definido previa-
mente —por ejemplo, en otra parte del codigo escrita por otro programador, o por
nosotros hace mucho tiempo, lo que viene a ser lo mismo—.

«.equ Constant, Value»

«Name .req rd»
«.unreq Name)»

http://lorca.act.uji.es/libro/introARM2016/codigo/02_dias.s
http://lorca.act.uji.es/libro/introARM2016/codigo/02_diasreg.s

'S

© 0w N O«

10
11

2.4. Inicializacién de datos y reserva de espacio

o8

.text
day .req r7

main: mov day, #Monday
mov day, #Tuesday
.unreq day

@ ...
stop: wfi

2.4. Inicializacion de datos y reserva de
espacio

Como se ha explicado en el Capitulo 1, practicamente cualquier pro-
grama de computador necesita utilizar datos para llevar a cabo su tarea.
Por regla general, estos datos se almacenan en la memoria principal del
computador. Cuando se programa en un lenguaje de alto nivel se pue-
den utilizar variables para referenciar a diversos tipo de datos. Serd el
compilador (o el intérprete, segiin sea el caso) quien se encargard de
decidir en qué posiciones de memoria se almacenaran y cuanto ocupa-
ran los tipos de datos utilizados por dichas variables. El programador
simplemente declara e inicializa dichas variables, pero no se preocupa de
indicar cémo ni dénde deben almacenarse. Por contra, el programador
en ensamblador —o un compilador de un lenguaje de alto nivel— si de-
be indicar qué y cuantas posiciones de memoria se deben utilizar para
almacenar las variables de un programa, asi como indicar sus valores
iniciales.

Los ejemplos que se han visto hasta ahora constaban tnicamente de
una seccién de cédigo —declarada por medio de la directiva «.text»—.
Sin embargo, lo habitual es que un programa en ensamblador tenga dos
secciones: una de cédigo y otra de datos. La directiva «.data» le indica
al ensamblador donde comienza la seccién de datos. En los siguientes
subapartados se muestra como inicializar diversos tipos de datos y cémo
reservar espacio para variables que no tienen un valor inicial definido.

«.data»

2.4. Inicializacién de datos y reserva de espacio

99

Bytes, palabras, medias palabras y dobles palabras

Recordando lo que se vio en el Capitulo 1, todos los computadores,
y por tanto, también los computadores basados en la arquitectura
ARM, acceden a la memoria a nivel de byte, siendo cada byte
un conjunto de 8 bits. Esto implica que hay una direccién de
memoria distinta para cada byte que forma parte de la memoria
del computador.

Poder acceder a la memoria a nivel de byte tiene sentido, ya
que algunos tipos de datos, por ejemplo los caracteres ASCII, no
requieren mas que un byte por caracter. Si se utilizara una medida
mayor de almacenamiento, se estaria desperdiciando espacio de
memoria. Pero por otro lado, la capacidad de expresion de un
byte es bastante reducida (p.e., si se quisiera trabajar con niimeros
enteros habria que contentarse con los nimeros del —128 al 127).
Por ello, la mayoria de computadores trabajan de forma habitual
con unidades superiores al byte. Esta unidad superior suele recibir
el nombre de palabra (word).

Al contrario de lo que ocurre con los bytes, que son siempre 8 bits,
el tamafno de una palabra depende de la arquitectura. En el caso
de la arquitectura ARM, una palabra equivale a 4 bytes. La deci-
sion de que una palabra equivalga a 4 bytes tiene implicaciones en
la arquitectura ARM y en la organizacién de los procesadores ba-
sados en dicha arquitectura: registros con un tamano de 4 bytes,
32 lineas en el bus de datos, etc.

La arquitectura ARM no solo fija el tamano de una palabra a
4 bytes, si no que también obliga a que las palabras en memoria
deban estar alineadas en direcciones de memoria que sean multi-
plos de 4.

Ademés de trabajar con bytes y palabras, también es posible ha-
cerlo con medias palabras (half-words) y con dobles palabras
(doubles). Una media palabra en ARM estd formada por 2 bytes
y debe estar en una direccién de memoria multiplo de 2. Una do-
ble palabra estd formada por 8 bytes y se alinea igual que una
palabra —en multiplos de 4—.

0 N O Uk W N =

2.4. Inicializacién de datos y reserva de espacio

60

2.4.1. Inicializaciéon de palabras

El codigo fuente que se muestra después de este parrafo estd forma-
do por dos secciones: una de datos y una de cddigo. En la de datos se
inicializan cuatro palabras y en la de coédigo tan solo hay una instruc-
ciéon de parada, «wfi». Dicho cédigo fuente no acaba de ser realmente
un programa ya que no contiene instrucciones en lenguaje ensamblador
que vayan a realizar alguna tarea. Simplemente estd formado por una
serie de directivas que le indican al ensamblador qué informaciéon debe
almacenar en memoria y donde. La primera de las directivas utiliza-
das, «.data», como se ha comentado hace poco, se utiliza para avisar
al ensamblador de que todo lo que aparezca debajo de ella, mientras
no se diga lo contrario, debe ser almacenado en la zona de datos. Las
cuatro siguientes lineas utilizan la directiva «.wordy». Esta directiva le
indica al ensamblador que se quiere reservar espacio para una palabra
e inicializar dicho espacio con un determinado valor. La primera de las
dos, la «.word 15, inicializard” una palabra con el nimero 15 a partir
de la primera direccién de memoria (por ser la primera directiva de ini-
cializacion de memoria después de la directiva «.data»). La siguiente,
«.word 0x15», inicializard la siguiente posicién de memoria disponible
con una palabra con el nimero 0x15.

02_palabras.s =

.data @ Comienzo de la zona de datos
wordl: .word 15 @ Numero en decimal
word2: .word 0x15 @ Nimero en hexadecimal
word3: .word 015 @ Numero en octal
word4: .word Obll @ Nimero en binario
.text
stop: wfi

> 2.5 Copia el codigo anterior en QtARMSim, ensdmblalo y resuelve
los siguientes ejercicios.

2.5.1 Encuentra los datos almacenados en memoria: localiza dichos
datos en el panel de memoria e indica su valor en hexadeci-
mal.

2.5.2 ;(En qué direcciones se han almacenado las cuatro palabras?
,Por qué las direcciones de memoria en lugar de ir de uno
en uno van de cuatro en cuatro?

9Por regla general, cuando se hable de directivas que inicializan datos, se sobre-
entenderd que también reservan el espacio necesario en memoria para dichos datos;
por no estar repitiendo siempre reserva e inicializacién.

«.word Value32»

http://lorca.act.uji.es/libro/introARM2016/codigo/02_palabras.s

2.4.

Inicializacién de datos y reserva de espacio

61

2.5.3 Recuerda que las etiquetas sirven para referenciar la di-
reccién de memoria de la linea en la que estan. Asi pues,
,qué valores toman las etiquetas «wordly», «word2», «word3»
y «word4»?

> 2.6 Crea ahora otro programa con el siguiente cédigo:

02_palabras2.s =
.data @ Comienzo de la zona de datos
words: .word 15, 0x15, 015, 0Obll

.text
stop: wfi

GUoR W N =

Cambia al modo de simulaciéon. ;Hay algtin cambio en los valores
almacenados en memoria con respecto a los almacenados por el
programa anterior? ;Estan en el mismo sitio?

Big-endian y Little-endian

Como ya se vio en el Capitulo 1, cuando se almacena en memoria
una palabra y es posible acceder a posiciones de memoria a nivel
de byte, surge la cuestién de en qué orden se deberian almace-
nar en memoria los bytes que forman una palabra. Por ejemplo,
si se quiere almacenar la palabra 0xAABBCCDD en la direccién de
memoria 0x2007 0000, la palabra ocupara los 4 bytes: 0x2007 0000,
0x2007 0001, 0x2007 0002 y 0x2007 0003. Sin embargo, ja qué po-
siciones de memoria iran cada uno de los bytes de la palabra?
Dependera de la organizacion utilizada.

0x2007 0000 | OxAA 0x2007 0000 | OxDD
0x2007 0001 | OxBB 0x2007 0001 | OxCC
0x2007 0002 | 6xCC 0x2007 0002 | OxBB
0x2007 0003 | OxDD 0x2007 0003 | OxAA
a) Big-endian b) Little-endian

En la organizacién big-endian, el byte de mayor peso (big) de la
palabra se almacena en la direccién de memoria mas baja (en-
dian). Por el contrario, en la organizacién little-endian, es el byte
de menor peso (little) de la palabra, el que se almacena en la
direccién de memoria méas baja (endian).

http://lorca.act.uji.es/libro/introARM2016/codigo/02_palabras2.s

2.4. Inicializacién de datos y reserva de espacio

62

2.4.2.

La directiva «.byte Value8» sirve para inicializar un byte con el

Inicializaciéon de bytes

contenido Value8.

> 2.7 Teclea el siguiente programa en el editor de QtARMSim y ensam-

2.4.3.

Para inicializar medias palabras y dobles palabras se deben utilizar
las directivas «.hword Valuel6» y «.quad Value64y», respectivamente.

2.4.4.

La directiva «.ascii "cadena"» le indica al ensamblador que debe

02_byte.s &
.data @ Comienzo de la zona de datos
.byte 0x10, 0x20, 0x30, 0x40

.text
wfi

2.7.1 ;Qué valores se han almacenado en memoria? ;En qué posi-
ciones de memoria?

2.7.2 ;Qué valor toma la etiqueta «bytes»?

Inicializaciéon de medias palabras y de dobles
palabras

Inicializacion de cadenas de caracteres

inicializar la memoria con los cédigos UTF-8 de los caracteres que com-
ponen la cadena entrecomillada. Dichos cddigos se almacenan en posicio-
nes consecutivas de memoria. La directiva «.asciz "cadena"» también «.asciz "cadena"»
sirve para declarar cadenas, la diferencia entre «.ascii» y «asciz» ra-
dica en que la ultima anade un byte a 0 después del ultimo caracter
de la cadena. De esta forma y asegurandose de que todos los caracteres
que pueden formar parte de una cadena sean siempre distintos de cero,
un programa podria recorrer la cadena hasta encontrar el byte a cero
anadido por «.asciz», lo que le serviria para saber que ha llegado al
final de la cadena. Muchos lenguajes de programacion, entre ellos Java,
C y C++, utilizan este método para el almacenamiento de cadenas.

«.byte Value8»

«.hword Valuel6»
«.quad Value64»

«.ascii "cadena"»

http://lorca.act.uji.es/libro/introARM2016/codigo/02_byte.s

2.4. Inicializacién de datos y reserva de espacio 63

> 2.8 Copia el siguiente codigo en el simulador y ensamblalo.
02_cadena.s &
1 .data @ Comienzo de la zona de datos
2| str: .ascii "abcde"
3 | byte: .byte Oxff
4
5 .text
6|stop: wfi
2.8.1 ;Qué rango de posiciones de memoria se han reservado para
la variable etiquetada con «str»?
2.8.2 ;Cudl es el codigo UTF-8 de la letra «a»? ;Y el de la «b»?
2.8.3 ;Qué direcciéon de memoria referencia la etiqueta «byte»?
2.8.4 ;Cuantos bytes se han reservado en total para la cadena?
2.4.5. Reserva de espacio
La directiva «.space N» se utiliza para reservar N bytes de memoria «.space N»

e inicializarlos a 0.

> 2.9 Dado el siguiente cédigo:

[I e N N

bytel:
space:
byte2:

word:

stop:

2.9.1

2.9.2

2.9.3

02_space.s &
.data @ Comienzo de la zona de datos
.byte 0x11
.space 4
.byte 0x22
.word OxAABBCCDD

.text
wfi

., Qué posiciones de memoria se han reservado para almace-
nar la variable «space»?

. Los cuatro bytes utilizados por la variable «space» podrian
ser leidos o escritos como si fueran una palabra? ;Por qué?
LA partir de qué direcciéon se ha inicializado «bytel»? ;A
partir de cual «byte2»?

http://lorca.act.uji.es/libro/introARM2016/codigo/02_cadena.s
http://lorca.act.uji.es/libro/introARM2016/codigo/02_space.s

2.5. Ejercicios

64

2.9.4 ;A partir de qué direccién se ha inicializado «word»? ;La
palabra «word» podria ser leida o escrita como si fuera una
palabra? ;Por qué?

2.4.6. Alineacién de datos en memoria

La directiva «.balign N» le indica al ensamblador que el siguiente
dato que vaya a reservarse o inicializarse, debe comenzar en una direc-
ciéon de memoria multiplo de V. Por otro lado, la directiva «.align N»
le indica al ensamblador que el siguiente dato que vaya a reservarse o
inicializarse, deberda comenzar en una direccién de memoria multiplo
de 27V,

> 2.10 Anade en el codigo anterior dos directivas «.balign N» de tal
forma. que:

e la variable etiquetada con «space» comience en una direccién
de memoria multiplo de 2, y

e la variable etiquetada con «word» esté en un multiplo de 4.

2.5. Ejercicios

Ejercicios de nivel medio

> 2.11 El siguiente programa carga en los registros r0 al r3 los carac-
teres ‘H’, ‘o', ‘I’ y ‘a’, respectivamente. Copia dicho programa en
QtARMSim, cambia al modo de simulacién y contesta las siguien-
tes preguntas.

02_letras.s &
.text
main: mov r0O, #'H’
mov rl, #'o’
mov r2, #'1’
mov r3, #'a’
stop: wfi

[N

2.11.1 Cuando el simulador ha desensamblado el cédigo maquina,
iqué ha pasado con las letras «H», «o», «I» y «a»? ;A qué
crees que es debido?

«.balign N»

«.align N»

http://lorca.act.uji.es/libro/introARM2016/codigo/02_letras.s

2.5. Ejercicios

65

2.11.2

Ejecuta paso a paso el programa, ;qué ntmeros se van al-
macenando en los registros r@ al r37

> 2.12 Dado el siguiente cédigo, contesta a las preguntas que aparecen
a continuacién:

© 0 N O GoR W N

main:

stop:

2.12.1

2.12.2

2.12.3

02_dias.s &
.equ Monday, 1
.equ Tuesday, 2
@ ...

.text
mov r@, #Monday
mov rl, #Tuesday

Q@ ...
wfi

.Dénde se han declarado las constantes en dicho cédigo?,
i,dénde se han utilizado?, jen cudl de los dos casos se ha
utilizado el cardcter «#» para referirse a un literal y en cual
no?

Copia el codigo anterior en QtARMSim, ;qué ocurre al
cambiar al modo de simulacion?, ;dénde estd la declara-
cién de constantes en el c6digo maquina?, ;japarecen las
constantes «Monday» y «Tuesday» en el codigo maquina?

Modifica el valor de las constantes en el cdédigo fuente en
ensamblador, guarda el codigo fuente modificado, y vuelve
a ensamblar el codigo (vuelve al modo de simulacién). ;Qué
ha cambiado en el c6digo maquina?

> 2.13 El siguiente codigo fuente utiliza constantes y personaliza el
nombre de un registro, cépialo en el simulador y ensamblalo, ;como
se han reescrito las instrucciones «mov» en el codigo maquina?

© 0 N o G W N

=
= o

main:

stop:

02_diasreqg.s &
.equ Monday, 1
.equ Tuesday, 2
@ ...

.text

day .req r7

mov day, #Monday
mov day, #Tuesday
.unreq day

@ ...

wfi

http://lorca.act.uji.es/libro/introARM2016/codigo/02_dias.s
http://lorca.act.uji.es/libro/introARM2016/codigo/02_diasreg.s

2.5. Ejercicios

66

Ejercicios avanzados

> 2.14 Sea el siguiente programa

02_byte-palabra.s &

1 .data @ Comienzo de la zona de datos
2 | bytes: .byte 0x10, 0x20, 0x30, 0x40

3 |word: .word 0x10203040

4

5 .text

6|stop: wfi

2.14.1 ;Qué valores se han almacenado en memoria?

2.14.2 Viendo cémo se han almacenado y como se muestran en el
simulador la secuencia de bytes y la palabra, ;qué tipo de
organizacion de datos, big-endian o little-endian, crees que
sigue el simulador?

2.14.3 ;Qué valores toman las etiquetas «bytes» y «word»?

> 2.15 Teniendo en cuenta que es posible inicializar varias palabras
en una sola linea, separdndolas por comas, crea un programa en
ensamblador que defina un vector'’ de cinco palabras (words),
asociado a la etiqueta «vector», que tenga los siguientes valores:
0x10, 30, 0x34, 0x20 y 60. Cambia al modo simulador y comprueba
que el vector se ha almacenado de forma correcta en memoria.

> 2.16 El siguiente programa utiliza las directivas «.ascii» y «asciz»
para inicializar sendas cadenas. jHay alguna diferencia en el con-
tenido de la memoria utilizada por ambas cadenas? ;Cual?

02_cadena2.s &

.data @ Comienzo de la zona de datos
str: .ascii "abcde"
byte: .byte Oxff

.balign 4
str2: .asciz "abcde"

byte2: .byte Oxff

.text
stop: wfi

© W N O U W N =

10Un vector es un tipo de datos formado por un conjunto de datos almacenados de
forma secuencial. Para poder trabajar con un vector es necesario conocer la direccién
de memoria en la que comienza —la direcciéon del primer elemento— y su tamaifo.

http://lorca.act.uji.es/libro/introARM2016/codigo/02_byte-palabra.s
http://lorca.act.uji.es/libro/introARM2016/codigo/02_cadena2.s

2.5. Ejercicios

67

Ejercicios adicionales

> 2.17 Desarrolla un programa ensamblador que realice la siguiente
reserva de espacio en memoria: una palabra, un byte y otra palabra
alineada en una direccién multiplo de 4.

> 2.18 Desarrolla un programa ensamblador que realice la siguiente
reserva de espacio e inicializacién de memoria: una palabra con
el valor 3, un byte con el valor 0x10, una reserva de 4 bytes que
comience en una direccién multiplo de 4, y un byte con el valor 20.

> 2.19 Modifica el siguiente cédigo sustituyendo la primera directiva
«.word» por una directiva «.byte» y la segunda directiva «.word»
por una directiva «.hword», v modificando los valores numéricos
dados para que al ensamblar el nuevo codigo se realice la misma
inicializacién de memoria que la realizada por el cédigo original.

02_palabras3.s =

1 .data @ Comienzo de la zona de datos
2|a: .word 0x10203040

3|b: .word 0x50607080

4

5 .text

6|stop: wfi

> 2.20 Desarrolla un programa que reserve espacio para una variable de
cada uno de los tipos de datos soportados por ARM. Cada variable
debe estar convenientemente alineada en memoria y etiquetada.

> 2.21 Desarrolla un programa que inicialice una variable de cada uno
de los tipos de datos soportados por ARM. Cada variable debe
estar convenientemente alineada en memoria y etiquetada.

> 2.22 Desarrolla un programa ensamblador que reserve espacio para
dos vectores consecutivos, A y B, de 20 palabras cada uno.

> 2.23 Desarrolla un programa ensamblador que inicialice, en el es-
pacio de datos, la cadena de caracteres «Esto es un problemay,
utilizando:
a) La directiva «.ascii»
b) La directiva «.byte»

c¢) La directiva «.word»

http://lorca.act.uji.es/libro/introARM2016/codigo/02_palabras3.s

2.5. Ejercicios 68

(Pista: Comienza utilizando solo la directiva «.ascii» y visualiza
como se almacena en memoria la cadena para obtener la secuencia
de bytes.)

> 2.24 Sabiendo que un entero ocupa una palabra, desarrolla un pro-
grama ensamblador que inicialice en la memoria la matriz A de
enteros definida como:

BN

Il
~ &~ =
co Ot N
O O W

suponiendo que:
a) La matriz A se almacena por filas (los elementos de una mis-
ma fila se almacenan de forma contigua en memoria).

b) La matriz A se almacena por columnas (los elementos de una
misma columna se almacenan de forma contigua en memoria).

CArPiTULO

Instrucciones de transformacion
de datos

Indice

3.1. Banco de registrosde ARM 70

3.2. Operaciones aritméticas 72

3.3. Operaciones logicas 78

3.4. Operaciones de desplazamiento 80

3.5. Modos de direccionamiento y formatos de instruc-
cibonde ARM 82

3.6. Ejercicios o o 86

En el capitulo anterior se ha visto una breve introduccién al ensam-
blador de ARM y al simulador QtARMSim, ademéas de cémo es posible
en ensamblador declarar y utilizar literales y constantes e inicializar y
reservar posiciones de memoria para distintos tipos de datos.

En este capitulo se veran las instrucciones de transformacién de da-
tos que, como se vio en el Capitulo 1, son las que realizan algin tipo de
operacion sobre los datos utilizando las unidades de transformacion del
procesador. Concretamente, se presentaran las instrucciones proporcio-
nadas por ARM para la realizacién de operaciones aritméticas, 16gicas y
de desplazamiento de bits. Puesto que dichas instrucciones operan con
el contenido de registros, antes de describir la funcionalidad de dichas
instrucciones, se introducird brevemente el banco de registros de ARM.
Ademas, una vez visto el banco de registros y la funcionalidad de dichas
instrucciones, se veran con detalle los modos de direccionamiento utili-
zados para codificar sus operandos y el formato de estas instrucciones.

69

3.1. Banco de registros de ARM

70

3.1. Banco de registros de ARM

El banco de registros de ARM esta formado por 16 registros visibles
por el programador (véase la Figura 3.1) y por un registro de estado,
todos ellos de 32 bits. De los 16 registros visibles por el programador, los
13 primeros —del r0@ al r12— son de propdsito general. Por contra, los
registros rl3, rl4 y rl5 son registros de propoésito especifico. El registro
ri13 almacena el puntero de pila —o SP, por Stack Pointer—; el registro
ri4 recibe el nombre de registro enlace —o LR, por Link Register— y al-
macena la direccién de vuelta de una subrutina; y, por ultimo, el registro
ris, que es el contador de programa —o PC, por Program Counter—,
almacena, como ya se ha visto en los capitulos anteriores, la direcciéon
de memoria de la siguiente instruccién a ejecutar. Los registros r13 (SP)
y r14 (LR) se utilizan profusamente en la gestiéon de subrutinas, por lo
que se trataran con més detalle en los Capitulos 6 y 7, que abordan
dicha temaética. El registro r15 (PC) es especialmente importante para
las instrucciones de control de flujo, por lo que se abordard més dete-
nidamente en el Capitulo 5, dedicado a dichas instrucciones. El tltimo
de los registros de ARM, el registro de estado, se describe un poco mas
adelante.

r0
rl
r2
r3
'S r4
S 2 5
r
)
B2 6
25
Na)
& g_ r7
S r8
r9
r10
r11
© rl2
o238 r13 (SP) Puntero de pila
o nE
=88 r14 (LR) Registro enlace
=0
§’ S r15 (PC) Contador de programa

Figura 3.1: Registros visibles de ARM

En vista de lo anterior, conviene saber que la arquitectura ARM es
inusual dentro de las arquitecturas RISC por el hecho de tener tinicamen-
te 16 registros de propdsito general. Seleccionar uno de entre 16 registros

3.1. Banco de registros de ARM

71

requiere 4 bits en lugar de los 5 bits necesarios en las arquitecturas RISC
con 32 registros. Este menor nimero de bits, 4 frente a 5 por operando,
conlleva un ahorro de hasta 3 bits por instruccién —con tres operan-
dos en registros—. Este ahorro en los bits necesarios para codificar los
operandos de una instruccién permite a la arquitectura ARM disponer
de mas bits para codificar instrucciones distintas, lo que le ha permi-
tido proporcionar un juego de instrucciones mas rico que el de otras
arquitecturas RISC [Clel14].

Por su parte, la versién Thumb de ARM, donde la mayor parte de las
instrucciones ocupan tnicamente 16 bits, va un paso mas alld haciendo
que la mayoria de las instrucciones solo puedan operar con los 8 prime-
ros registros, del r@ al r7; proporcionando, por otro lado, y para aquellos
casos en los que sea conveniente disponer de un mayor ntmero de regis-
tros o se requiera acceder a uno de los registros de propésito especifico,
un pequeno conjunto de instrucciones que si que pueden acceder y ope-
rar con los registros del r8 al r15. Esta distincién entre registros bajos
—Ilos 8 primeros— y registros altos —los 8 siguientes—, y la limitacién
en el uso de los registros altos a unas pocas instrucciones, ha permiti-
do a la arquitectura Thumb de ARM codificar un amplia variedad de
instrucciones en tan solo 16 bits por instruccién.

31 30 29 28 27 8 7 6 5 4 0
N z CcC |V gg IF T modo
Indicadores de condicion Modo de operacion

Figura 3.2: Registro de estado —current processor status register—

En cuanto al registro de estado (véase la Figura 3.2), los cuatro bits
de mayor peso almacenan los indicadores de condicion (condition flags),
que se describen a continuacién, y los 8 bits de menor peso contienen
informacién del sistema, tales como el estado del procesador y los me-
canismos de tratamiento de las interrupciones, que se abordaran en los
ultimos capitulos de este libro. Los indicadores de condicién, que son N,
Z, C y V, sirven para indicar distintas propiedades del resultado obteni-
do tras la ejecucion de ciertas instrucciones. A continuacién se muestra
cuando se activa' o desactiva cada uno de los indicadores:

LComo ya se sabe, un bit puede tomar uno de dos valores: 0 o 1. Se dice que
un bit se activa (set), cuando toma el valor 1. Por el contrario, se dice que un bit se
desactiva (clear), cuando toma el valor 0. Ademads, si se indica que un bit se activa bajo
determinadas circunstancias, se sobreentiende que si no se dan dichas circunstancias,
dicho bit se desactiva (se pone a 0). Lo mismo ocurre, pero al revés, cuando se dice
que un bit se desactiva bajo determinadas circunstancias.

Thumb distingue entre
registros bajos (low re-
gisters) y registros al-
tos (high registers).

El registro de estado es
un registro que contie-
ne informacién sobre el
estado actual del proce-
sador.

O

| = ¢
b A
o \"/))

https://en.wikipedia.org/wiki/Status_register

3.2. Operaciones aritméticas 72
N: Se activa cuando el resultado de la operacién realizada es negativo
(si el resultado de la operacién es 0, este se considera positivo).
Z: Se activa cuando el resultado de la operacion realizada es 0.
C: Se activa cuando el resultado de la operacién produce un acarreo (lla-
mado carry en inglés).
V: Se activa cuando el resultado de la operacién produce un desborda-
miento en operaciones con signo (overflow).
Los indicadores de condiciéon del registro de estado se muestran en
QtARMSim en la esquina inferior derecha de la ventana del simulador.
La Figura 3.3 muestra un ejemplo donde los indicadores Z y C estan
activos y los otros dos no.
= - Flags: n 2 € v
[t
Figura 3.3: Visualizacién de los indicadores de condicién
Instruccién «mov rd, #Inm8»
Aunque «mov rd, #Inm8» es una instruccién de transferencia de
datos, por lo que se verd con mas detalle en el Capitulo 4, se
utiliza a menudo en este capitulo, sobre todo para simplificar la
realizacién de los ejercicios. Por el momento, basta con saber que
la instruccion «mov rd, #Inm8», carga en el registro rd el dato
inmediato de 8 bits, Inm8, especificado en la propia instruccion,
es decir, rd < Inm8.
3.2. Operaciones aritméticas
De las instrucciones de ARM que realizan operaciones aritméticas, se
van a ver en primer lugar las instrucciones de suma y resta. En concreto,
la instruccién «add rd, rs, rny», suma el contenido de los registros rs y «add»

rn, y almacena el resultado de la suma en rd (rd < rs+rn). Por su parte,

TR W N =

3.2. Operaciones aritméticas 73

la instruccién «sub rd, rs, rny, resta el contenido de rn del contenido
de rs y almacena el resultado de la resta en rd. En el siguiente programa
de ejemplo se puede ver una instrucciéon que suma el contenido de los
registros r@ y rl y almacena el resultado de la suma en el registro r2.

03_add.s &
text @ Zona de instrucciones
main: mov r@, #2 @ro <- 2
mov rl, #3 @rl <-3
add r2, r0, r1 @ r2 <- r0 + rl
stop: wfi
> 3.1 Copia el programa anterior en el simulador y contesta a las si-

guientes preguntas ejecutandolo paso a paso:

3.1.1 ;Qué hace la primera instruccién, «mov r@, #2»7
3.1.2 ;Qué hace la segunda instruccién, «mov rl, #3»7
3.1.3 ;Qué hace la tercera instruccién, «add r2, rl, ro»?

3.1.4 Modifica el c6édigo para que realice la suma de los ntimeros
10 y 6. Ejecuta el programa y comprueba que el contenido
del registro r2 es el esperado.

3.1.5 Modifica el dltimo cédigo para que en lugar de realizar la
operacion 10 + 6, calcule 10 — 6. Ejecuta el nuevo codigo y
comprueba que el contenido del registro r2 es el esperado.

Puesto que por simplificar, la mayoria de los ejemplos propuestos
en este capitulo inicializan los registros con valores constantes antes de
realizar las operaciones correspondientes, podria dar la impresion de que
ese es el procedimiento habitual en un programa, cuando no lo es. En
un caso real, los registros contienen el valor actual de las variables con En programacién, se
las que se estd operando en un momento dado, y el valor de dichas va- denomina variable a
riables puede cambiar entre una ejecucién y la siguiente de la misma UD espacio en memoria
instruccién. El siguiente ejercicio pretende ilustrar la naturaleza varia- asociado a un identifi-
ble del contenido de los registros que intervienen en una determinada cador. .
operacion. Para ello, se propone que se ejecute varias veces un mismo el |
programa, que consta de una unica instruccién de suma, modificando a \;j
mano el contenido de los registros antes de cada ejecucion.

https://es.wikipedia.org/wiki/Variable_(programaci�n)
http://lorca.act.uji.es/libro/introARM2016/codigo/03_add.s

3.2. Operaciones aritméticas

74

> 3.2 Copia el siguiente cddigo en el simulador, pasa al modo de si-
mulaciéon y completa la tabla que viene después, donde cada fila
corresponde a una nueva ejecucién en la que se han cargado pre-
viamente los valores indicados en los registros r@ y rl. En la tltima
columna deberas anotar el contenido de r2 en hexadecimal (utili-
zando la notacién 0x) tras la ejecucién correspondiente. Recuerda
que para modificar el contenido de un registro hay que hacer doble-
clic sobre el registro que se quiere modificar, introducir el nuevo
valor y pulsar retorno. Y que para recargar una simulacién, tal
y como se vio en el Capitulo 2, se debe seleccionar la entrada de
menu «Run > Refreshy», o pulsar la tecla «F4».

03_add_sin_datos.s &
1 .text @ Zona de instrucciones
2 | main: add r2, r0, rl1 @ r2 <- r0 + rl
3|stop: wfi

ro rl r2

4)

10 6
0x23 0x12
0x23 0x27

Como se ha visto, antes de realizar una operaciéon con dos registros
como operandos fuente, ha sido necesario cargar previamente en dichos
registros los datos que se queria sumar o restar. Sin embargo, es muy
frecuente encontrar en los programas sumas y restas en las que uno
de los operandos, ahora si, es un valor constante (p.e., cuando se quiere
decrementar en uno un determinado contador: «nvidas = nvidas - 1»).
Asi que para evitar tener que cargar un valor constante en un registro
antes de realizar la suma o resta correspondiente, ARM proporciona
varias instrucciones que suman o restan el contenido de un registro y
un valor constante especificado en la propia instruccién. Dos de estas
instrucciones son: «add rd, rs, #Inm3», que suma el dato inmediato
«Inm3» al contenido del registro rs y almacena el resultado en rd; y
«sub rd, rs, #Inm3», que resta el dato inmediato «Inm3» del contenido
del registro rs y almacena el resultado en rd. Conviene tener en cuenta
que en estas instrucciones el campo destinado al dato inmediato es de
solo 3 bits, por lo que solo se podra recurrir a estas instrucciones en el
caso de que el dato inmediato sea un ntimero entre 0 y 7.

«add» (Inm3)

«suby (Inm3)

http://lorca.act.uji.es/libro/introARM2016/codigo/03_add_sin_datos.s

3.2. Operaciones aritméticas

75

> 3.3 Copia el siguiente programa en el simulador y contesta a las pre-
guntas ejecutandolo paso a paso:

03_add_inm.s &

1 .text @ Zona de instrucciones
2 | main: mov r@, #10 @ ro <- 10

3 sub rl, r0, #1 @ rl <- r0 - 1

4 | stop: wfi

3.3.1 ;Qué hace la primera instruccién, «mov r@, #10»?
3.3.2 ;Qué hace la segunda instruccién, «sub rl, r@, #1»?

3.3.3 ;Qué valor hay al final de la ejecucién del programa en los
registros r@ y ri1?

3.3.4 Sustituye la instruccién «sub rl, r0, #1» del cdédigo ante-
rior por una en el que el dato inmediato sea mayor a 7. Pasa
al modo de simulacién, ;qué mensaje de error se ha mostra-
do en el panel de mensajes?, jmuestra el mensaje de error
en qué linea del codigo se ha producido el error?, jen cual?

El ensamblador ARM también proporciona otras dos instrucciones
de suma y resta, «add rd, #Inm8» y «sub rd, #Inm8», que permiten
que uno de los operandos sea un dato inmediato, pero esta vez, de 8 bits
—frente a las anteriores instrucciones en las que el dato inmediato era
de tan solo 3 bits—. Utilizando estas instrucciones se puede especifi-
car un valor en el rango [0,255] —en lugar de en el rango [0, 7], como
ocurria en las anteriores—. Sin embargo, la posibilidad de utilizar un
dato inmediato de mayor tamafio tiene su coste: solo queda espacio en
la instruccién para especificar un registro, que por tanto, debera actuar
a la vez como operando fuente y destino. Asi, a diferencia de las ins-
trucciones «add rd, rs, #Inm3» y «sub rd, rs, #Inm3», en las que se
sumaban o restaban dos operandos, uno de ellos en un registro, y el
resultado se guardaba sobre un segundo registro, posiblemente distinto
del otro, estas instrucciones tan solo permiten incrementar o decremen-
tar el contenido de un determinado registro en un valor determinado. A
modo de ejemplo, el siguiente c6digo decrementa en 50 el contenido del
registro ro.

03_add_inm8.s =,

.text @ Zona de instrucciones
main: mov r@, #200 @ ro <- 200
sub r0, #50 @ro <- re - 50

stop: wfi

«add» (Inm8)
«suby (Inm8)

http://lorca.act.uji.es/libro/introARM2016/codigo/03_add_inm.s
http://lorca.act.uji.es/libro/introARM2016/codigo/03_add_inm8.s

3.2. Operaciones aritméticas

76

Otra operacién aritmética que se utiliza con frecuencia es la de com-
paracion, «cpm rs, rn», sobre todo, y tal como se vera en el Capitulo 5,
para determinar el flujo del programa en funcién del resultado de la 1l-
tima comparacion realizada. Sin entrar por el momento en detalles, al
comparar dos registros se activan o desactivan una serie de indicadores
del registro de estado, y en el caso de las instrucciones de control de
flujo, el estado de algunos de dichos indicadores se utilizara para fijar el
camino a seguir. En realidad, cuando el procesador ejecuta la instruccién
de comparacién, lo tinico que hace es restar sus operandos fuente para
que los indicadores de condicion se actualicen en funcién del resultado
obtenido, pero no almacena dicho resultado. Asi por ejemplo, cuando el
procesador ejecuta la instruccién de comparacién «cmp r@, rly» resta el
contenido del registro r1 del contenido del registro ro, lo que activa los
indicadores correspondientes en funcién del resultado obtenido, que no
se almacena en ningun sitio.

> 3.4 Copia el siguiente programa en el simulador y realiza los ejercicios
propuestos a continuacién.

03_cmp.s &

1 .text @ Zona de instrucciones
2 |main: mov r@, #10

3 mov rl, #6

4 mov r2, #6

5 cmp r@, rl

6 cmp rl, ro

7 cmp rl, r2

8

9 |stop: wfi

3.4.1 Ejecuta paso a paso el programa hasta ejecutar la instruccion
«emp r@, rly inclusive. ;Se ha activado el indicador C?
Nota: En el caso de la resta, el indicador C se utiliza para
indicar si el resultado cabe en una palabra (C activado) o, por
el contrario, si no cabe en una palabra (C desactivado). Asi,
que C esté desactivado equivale al «me llevo una» de cuando
se resta a mano.

3.4.2 Ejecuta la siguiente instruccién, «cmp rl, r@». ;Qué indica-
dores se han activado? j Por qué?

3.4.3 Ejecuta la ultima instruccién, «emp rl, r2». jQué indicado-
res se han activado? ;Por qué?

«cmpy

http://lorca.act.uji.es/libro/introARM2016/codigo/03_cmp.s

3.2. Operaciones aritméticas

7

Otra de las operaciones aritméticas que puede realizar un procesador
es la de cambio de signo. La instruccién que permite cambiar el signo de
un nimero es «neg rd, rs» (rd < —rs). El siguiente ejercicio muestra
un ejemplo en el que se usa dicha instruccion.

> 3.5 Copia el siguiente programa en el simulador, ejeciitalo y completa
la tabla que le sigue.

03_neg.s =

1 .text @ Zona de instrucciones
2 |main: mov r@, #64

3 neg rl, ro @rl <- -ro

4 neg r2, rl @r2<- -rl

5| stop: wfi

ro rl r2

La ultima de las operaciones aritméticas que se va a ver es la multi-
plicacién. El siguiente programa muestra un ejemplo en el que se utiliza
la instruccién «mul rd, rm, rn», que multiplica el contenido de rm y rn
y almacena el resultado en rd —donde rd forzosamente tiene que ser uno
de los dos registros rm o rn—. De hecho, puesto que el registro destino
debe coincidir con uno de los registros fuente, también es posible escribir
la instruccién de la forma «mul rm, rn», donde rm es el registro en el
que se almacena el resultado de la multiplicacién.

> 3.6 Ejecuta el siguiente programa y resuelve las siguientes cuestiones.

03_mul.s =

1 .text @ Zona de instrucciones
2 [main: mov rO, #10 @ ro <- 10

3 mov rl, #6 @rl <-6

4 mul rl, r@, rl @ rl <- r@ * rl
5|stop: wfi

3.6.1 ;Qué valor se ha almacenado en r1? ;Corresponde al resul-
tado de 10 x 67 ;Cémo lo has comprobado?

3.6.2 Vuelve al modo de ediciéon y modifica el programa sustitu-
yendo la instruccién «mul rl, r@, rl» por una igual pero
en la que el registro destino no sea ni r0, ni rl. Intenta en-
samblar el codigo, jqué mensaje de error se genera?

«muly

http://lorca.act.uji.es/libro/introARM2016/codigo/03_neg.s
http://lorca.act.uji.es/libro/introARM2016/codigo/03_mul.s

3.3. Operaciones logicas

78

3.6.3 Modifica el programa original sustituyendo la instruccién
«mul rl, r@, rly» por una instruccién equivalente que utili-
ce la variante con dos registros de la multiplicaciéon. Ejecuta
el c6édigo y comprueba si el resultado es correcto.

3.3. Operaciones légicas

Una vez vistas las instrucciones aritméticas soportadas por ARM,
en este apartado se presentan las operaciones légicas que dicha arqui-
tectura puede realizar. En concreto, la arquitectura ARM proporciona
las siguientes instrucciones que permiten realizar las operaciones 16gi-
cas «y» (and), «o» (or), «o exclusiva» (eor o zor) y «complementa-
rio» (not), respectivamente:

» «and rd, rs», rd < rd AND rs (operacién logica «y»).
» «orr rd, rs», rd < rd OR rs (operacion logica «o»).
» «eor rd, rs»: rd < rd EOR rs (operacion logica «o exclusivay).

» «mvn rd, rs»: rd < NOT rs (operacién logica «complementa-
rioy).

Las operaciones légicas «y», «o» y «o exclusiva» realizan bit a bit la
operacion logica correspondiente sobre los dos operandos fuente y alma-
cenan el resultado en el primero de dichos operandos. Asi, por ejemplo,
la instruccién «and r@, rl» almacena en r@ una palabra en la que su
bit 0 es la «y» de los bits 0 de los dos operandos fuente, el bit 1 es la
«y» de los bits 1 de los dos operandos fuente, y asi sucesivamente. Es
decir, ro; < ro; A rl;,Vi € [0,31]. Asi pues, y suponiendo que los regis-
tros r@ y rl tuvieran los valores 0x0000 00D7 y 0x0000 00EQ, la instrucciéon
«and r@, rly» realizaria la operacion que se describe a continuacién, al-
macenando el resultado en el registro ro.

00000000 00000000 00000000 11010111,
y 00000000 00000000 00000000 11100000,
0000 0000 00000000 COCOLCOOO 11000000,

Si se describiera la operacion anterior en funcién del segundo ope-
rando, se podria decir que puesto que dicho operando tiene todos sus
bits a 0 excepto los bits 5, 6 y 7, todos los bits del resultado seran 0
salvo los bits 5, 6 y 7, que tomaran el valor que esos bits tengan en el
primer operando. De hecho, lo anterior es cierto independientemente del
valor que tenga el primer operando: si el registro rl contiene el valor
0x0000 00EO, el resultado de ejecutar la instruccién «and r@, rl» sera:

3.3. Operaciones logicas

79

Operaciones logicas «y», «o» y «o exclusivay

A continuacién se muestra para cada operacién logica su corres-
pondiente tabla de verdad en funcién del valor de los dos operan-
dos (izquierda) y en funcién del valor de uno de ellos (derecha).

Operacion logica «y»: Operacion logica «o»:
ab‘a/\b a‘a/\b ab‘a\/b a‘avb
00 0 0 0 00 0 0 b
01 0 1 b 01 1 1 1
10 0 10 1
11 1 11 1

Operacion logica «o exclusivay:
ab | a®b a ‘ ad®b

00 0 0 b
01| 1 1] b
10 1
11 0
b31b30b2gbag - -+ b11b10bobg brbebsbs b3b2bibg
y 00O0O0 -- 0000 1110 0000
y 0000 0 000 bbgbs0 0000

Cuando se utiliza una secuencia de bits con este fin, esta suele re-
cibir el nombre de méscara de bits, ya que «oculta» (pone a cero en
el ejemplo) determinados bits del otro operando, a la vez que permite
«very los bits restantes. Teniendo en cuenta las tablas de verdad de las
operaciones logicas «y», «0o» y «o exclusiva», es posible crear méascaras
de bits que, usadas en conjuncién con la correspondiente operacién 16gi-
ca, pongan determinados bits a 0, a 1, o los inviertan, respectivamente.
Como se verd en los capitulos dedicados a la entrada/salida, el uso de
méscaras de bits es muy frecuente en la gestién de la entrada/salida.

> 3.7 El siguiente programa implementa una operacién similar a la del
ejemplo anterior. Copialo en el simulador y ejecttalo. ; Qué valor,
expresado en hexadecimal, se almacena en el registro r0? ; Coincide
el resultado calculado con el comportamiento esperado segun la
explicacién anterior?

03_and.s &
1 .text @ Zona de instrucciones
2 | main: mov r@, #OxD7 @ rO <- 0bOOOEO 0O...00 1101 0111

Una mascara de bits es
una secuencia de bits
que permite poner a 0,
a 1 o invertir miltiples
bits de un nimero en
una Unica operacién.

v e
o 100
L el
b 00 s

"\ " y

https://en.wikipedia.org/wiki/Mask_(computing)
http://lorca.act.uji.es/libro/introARM2016/codigo/03_and.s

3.4. Operaciones de desplazamiento 80
3 mov rl, #OxE0 @ rl <- ObOOOO 00...00 1110 0000
4 and ro, rl @ ro <- r@ AND rl
5|stop: wfi
La ultima de las operaciones légicas que se describen en este apar-
tado, el complementario bit a bit de un niimero, opera sobre un tinico
operando. La instrucciéon «mvn rd, rs» permite obtener el complemento «mvny

bit a bit de un nimero. Es decir, rd; < —r0;, Vi € [0, 31]. Esta operacién
también se denomina complemento a 1 (abreviado como Cal).

> 3.8 Copia y ejecuta el siguiente programa. ; Qué valor se almacena en
rl tras su ejecucion? jEs el complemento bit a bit de 0xF0?

03_mvn.s &

1 .text @ Zona de instrucciones

2 |main: mov r@, #OxFO @ r0O <- 0bOOEOO 00...00 1111 0000
3 mvn rl, r0@ @ rl <- NOT rO

4 | stop: wfi

3.4. Operaciones de desplazamiento

Ademaés de operaciones aritméticas y légicas, la arquitectura ARM
también proporciona instrucciones que permiten desplazar los bits al-
macenados en un registro un determinado nimero de posiciones a la
derecha o a la izquierda. Las instrucciones de desplazamiento son las
tres siguientes:

= «asr rd, rs»,del inglés arithmetic shift right, que desplaza el con-
tenido de rd hacia la derecha el nimero de posiciones indicadas por
el contenido de rs conservando el signo (es decir, rd < rd ASR rs).

= «lsr rd, rs», del inglés logic shift right, que desplaza el contenido
de rd hacia la derecha el ntimero de posiciones indicadas por el
contenido de rs rellenando con ceros por la izquierda. (es decir,
rd < rd >>r5).

s «lsl rd, rs», del inglés logic shift left, que desplaza el contenido
de rd hacia la izquierda el niimero de posiciones indicadas por
el contenido de rs rellenando con ceros por la derecha. (es decir,
rd < rd << rs).

«asr», «lsr» y «lsl»

http://lorca.act.uji.es/libro/introARM2016/codigo/03_mvn.s

3.4. Operaciones de desplazamiento

81

> 3.9 Dado el siguiente programa:

main: mov
mov
lsr
lsr
lsr
sl
sl
sl
stop: wfi

© 0 N O U W N

[
(=)

.text

ro,
rl,
ro,
ro,
ro,
ro,
ro,
ro,

#32
#1
rl
rl
rl
rl
rl
rl

03_desp.s &

@ Zona de instrucciones

D ® @ ® @ ©®

ro
ro
ro
ro
ro
ro

ro
ro
ro
ro
ro
ro

A NN AN ANA
(T

>>

>>

>>

<<

<<

L =R W SR =

<<

Cépialo en el simulador y completa la siguiente tabla indicando
el contenido del registro r@ —en decimal, hexadecimal y en bina-
rio— tras la ejecucién de cada una de las instrucciones del progra-

ma.
Contenido de ro
Instruccién decimal hexadecimal binario
2: «mov rO, #32» 32 0x00000020 0...01000002
3: «mov rl, #1» 32 0x00000020 0...01000002
4: «lsr r0, rly»
5: «lsr r0, rly»
6: «lsr r0, rly»
7 «lsl r0, ril»
8 «lsl ro, riln»
9: «lsl r0, rl»

Al realizar el ejercicio anterior tal vez te hayas dado cuenta de que
cada uno de los valores obtenidos para ro al desplazarlo 1 bit a la derecha
es la mitad del anterior. Esto ocurre porque desplazar cierto valor un
bit hacia la derecha es equivalente a dividir entre dos dicho valor. Es
facil ver que si desplazamos dos bits estamos dividiendo entre 4, si son
3, entre 8 y asi, en general, se divide entre 2 elevado al niimero de bits
del desplazamiento. Es lo mismo que ocurre, en base diez, al dividir

http://lorca.act.uji.es/libro/introARM2016/codigo/03_desp.s

3.5. Modos de direccionamiento y formatos de instrucciéon de ARM

entre la unidad seguida de 0. De manera andloga, si desplazamos hacia
la izquierda, lo que hacemos es multiplicar. Si es un bit, por 2, si son 2,
por 4, etcétera.

3.5. Modos de direccionamiento y formatos de
instruccion de ARM

Como se ha visto en el Capitulo 1, una instruccién en ensamblador
codifica qué operacién se debe realizar, con qué operandos fuente y dénde
se debe guardar el resultado. También se ha visto que los operandos
fuente pueden estar: 1) en la propia instruccién, II) en un registro, o
1) en la memoria principal. Con respecto al operando destino, se ha
visto que se puede almacenar: I) en un registro, o II) en la memoria
principal.

Puesto que los operandos fuente de la instruccién deben codificarse
en la instruccién, seria suficiente dedicar ciertos bits de la instruccién
para indicar, para cada operando fuente: 1) el valor del operando, 11) el
registro en el que estd, o 111) la direccién de memoria en la que se encuen-
tra. De igual forma, puesto que el resultado puede almacenarse en un
registro o en memoria principal, bastaria con destinar otro conjunto de
bits de la instruccién para codificar: 1) el registro en el que debe guar-
darse el resultado, o 11) la direcciéon de memoria en la que debe guardarse
el resultado. Sin embargo, es conveniente disponer de otras formas mas
elaboradas de indicar la direccién de los operandos, principalmente por
los siguientes motivos [BMLNMA14]:

s Para ahorrar espacio de c6digo. Cuanto mas cortas sean las ins-
trucciones maquina, menos espacio ocuparan en memoria, por lo
que teniendo en cuenta que una instrucciéon puede involucrar a mas
de un operado, deberian utilizarse formas de indicar la direccién
de los operandos que consuman el menor espacio posible.

s Para facilitar las operaciones con ciertas estructuras de datos. El
manejo de estructuras de datos complejas (matrices, tablas, co-
las, listas, etc.) se puede simplificar si se dispone de formas més
elaboradas de indicar la direccién de los operandos.

= Para poder reubicar el cédigo. Si la direcciéon de los operandos
en memoria solo se pudiera expresar por medio de una direcciéon
de memoria fija, cada vez que se ejecutara un determinado pro-
grama, éste buscaria los operandos en las mismas direcciones de
memoria, por lo que tanto el programa como sus datos habrian de
cargarse siempre en las mismas direcciones de memoria. ;Qué pa-
saria entonces con el resto de programas que el computador puede

3.5. Modos de direccionamiento y formatos de instrucciéon de ARM

83

ejecutar? ;También tendrian direcciones de memoria reservadas?
;, Cudntos programas distintos podria ejecutar un computador sin
que éstos se solaparan? ;De cudnta memoria dispone el compu-
tador? Asi pues, es conveniente poder indicar la direccién de los
operandos de tal forma que un programa pueda ejecutarse inde-
pendientemente de la zona de memoria en la que haya sido cargado
para su ejecucion.

Por todo lo anterior, es habitual utilizar diversas formas, ademas de
las tres ya comentadas, de indicar la direccién efectiva de los operan-
dos fuente y del resultado de una instrucciéon. Las distintas formas en
las que puede indicarse la direccién efectiva de los operandos y del resul-
tado reciben el nombre de modos de direccionamiento. Algunos de
los principales modos de direccionamiento se vieron de forma genérica
en el Apartado 1.2.5.

Por otro lado, tal y como se ha comentado al principio, una ins-
truccion en ensamblador codifica qué operacién se debe realizar, con
qué operandos fuente y dénde se debe guardar el resultado. Queda por
resolver cémo se codifica toda esa informacién en la secuencia de bits
que conforman la instruccién. Una primera idea podria ser la de definir
una forma de codificacién tnica y general que pudiera ser utilizada por
todas las instrucciones. Sin embargo, como ya se ha visto, el niimero de
operandos puede variar de una instruccion a otra. De igual forma, como
ya se puede intuir, el modo de direccionamiento empleado por cada uno
de los operandos también puede variar de una instruccién a otra. Por
tanto, si se intentara utilizar una forma de codificacién tinica que englo-
bara a todos los tipos de instrucciones, ntimero de operandos y modos de
direccionamiento, el tamafio de las instrucciones seria innecesariamente
grande —algunos bits se utilizarian en unas instrucciones y en otras no,
y al revés—.

Como no todas las instrucciones requieren el mismo tipo de informa-
cién, una determinada arquitectura suele presentar diversas formas de
organizar los bits que conforman una instruccién con el fin de optimizar
el tamartio requerido por las instrucciones y aprovechar al maximo el ta-
mano disponible para cada instruccién. Las distintas formas en las que
pueden codificarse las instrucciones reciben el nombre de formatos de
instruccién (tal y como se detallé en el Apartado 1.2.4). Cada formato
de instrucciéon define su tamano y los campos que lo forman —cuanto
ocupan, su orden y su significado—. Un mismo formato de instrucciéon
puede ser utilizado para codificar uno o varios tipos de instrucciones.

En el Capitulo 1 se vieron de forma genérica los modos de direc-
cionamiento y los formatos de instruccién —presentando ejemplos de
la codificacién de varias instrucciones de distintas arquitecturas—. En
este capitulo y en los siguientes, se describiran dentro del correspon-

3.5. Modos de direccionamiento y formatos de instrucciéon de ARM

84

diente apartado «Modos de direccionamiento y formatos de instrucciéon
de ARM», los formatos de las instrucciones vistas en el capitulo y los
nuevos modos de direccionamiento utilizados. Si se desea consultar una
referencia completa del juego de instrucciones Thumb de ARM y de
sus formatos de instruccién, se puede recurrir al Capitulo 5 « THUMB
Instruction Set» de [ARM95].

3.5.1. Direccionamiento directo a registro

El direccionamiento directo a registro es el mas simple de los mo-
dos de direccionamiento ya que el operando se encuentra en un registro
y en la instruccién simplemente se debe codificar en cual. Este modo
de direccionamiento se utiliza en la mayor parte de instrucciones, tan-
to de transferencia, como de transformacién de datos, para algunos o
todos sus operandos. En ARM se utiliza este modo, por ejemplo, pa-
ra especificar los dos operandos fuente y el destino de las instrucciones
«add rd, rs, rn» y «sub rd, rs, rn». En el caso de la variante Thumb
de ARM, y que como se ha visto distingue entre 8 registros bajos y 8
registros altos, tan solo se utilizaran 3 bits de la instruccién para co-
dificar cada uno de los registros en los que se encuentran los distintos
operandos.

3.5.2. Direccionamiento inmediato

En el modo de direccionamiento inmediato, el operando esta en la
propia instrucciéon. Es decir, en la instruccién se debe codificar el valor
del operando (aunque la forma de codificar el operando puede variar
dependiendo del formato de instruccion —lo que normalmente esta re-
lacionado con para qué se va a utilizar dicho dato inmediato—). Co-
mo ejemplo de instrucciones que usen este modo de direccionamiento
estan: «add rd, rs, #Inm3», «sub rd, rs, #Inm3», «add rd, #Inm8» y
«sub rd, #Inm8», que utilizan el modo direccionamiento inmediato en
su segundo operando fuente. Las dos primeras instrucciones codifican el
dato inmediato en binario natural utilizando 3 bits de la instruccién, lo
que les proporciona un rango de posibles valores del 0 al 7. Las otras
dos instrucciones, también codifican el dato inmediato en binario natu-
ral, pero utilizando 8 bits de la instruccién, lo que les proporciona un
rango de posibles valores del 0 al 255.

3.5.3. Formato de las instrucciones aritméticas con tres
operandos

El formato de instruccién utilizado para codificar las instrucciones de
suma y resta con tres operandos, ya sea con 3 registros o con 2 registros

3.5. Modos de direccionamiento y formatos de instrucciéon de ARM 85

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1/|T1|Op|Rn/Inm3 Rs Rd

I Inmediato: 1, inmediato; 0, registro.
Op Tipo de operacién: 1, resta; 0, suma.
Rn/Inm3 Registro o dato inmediato.
Rs Registro fuente.

Rd Registro destino.

Figura 3.4: Formato de instrucciéon usado por las instrucciones de suma
y resta con tres registros o con dos registros y un dato inmediato de
3 bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0 o0 1 1{0j0)j0 0 10 1 0]0 1 1

Figura 3.5: Codificacién de la instruccion «add r3, r2, rly

y un dato inmediato de 3 bits, ocupa 16 bits y esta formado, de izquierda
a derecha, por los siguientes campos (véase Figura 3.4):

s OpCode: campo de 5 bits con el valor 00011,, que permitira a la
unidad de control saber que la instruccién es una de las soportadas
por este formato de instruccién.

s [: campo de 1 bit para indicar si el segundo operando fuente viene
dado por un dato inmediato o por el contenido de un registro.

= Op: campo de 1 bit para indicar si se trata de una instruccién de
resta o de suma.

» Rn/Inm3: campo de 3 bits correspondiente al segundo operando
fuente.

= Rs: campo de 3 bits correspondiente al primer operando fuente.
= Rd: campo de 3 bits correspondiente al operando destino.

Siguiendo dicho formato, la instruccién «add r3, r2, rl» se codifi-
ca como la siguiente secuencia de bits: «00011 0 0 001 010 011», tal y
como se desglosa en la Figura 3.5.

> 3.10 ;Qué instruccion se codifica como «00011 1 0 001 010 011»7
Compruébalo con el simulador.

3.6. Ejercicios 86

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 Op Rd Inm8

Op Tipo de operaciéon: 0, mov; 1, cmp; 2, add; 3, sub.
Rd Registro fuente/destino.

Inm8 Dato inmediato.

Figura 3.6: Formato de las instrucciones «mov rd, #Inm8y,
«emp rd, #Inm8», «add rd, #Inm8» y «sub rd, #Inm8»

3.5.4. Formato de las instrucciones con registro y dato
inmediato de 8 bits

Las instrucciones que utilizan un registro como operando fuente y
destino y un dato inmediato de 8 bits como segundo operando fuente,
«mov rd, #Inm8», «cmp rd, #Inm8», «add rd, #Inm8» y «sub rd, #Inm8»,
se codifican utilizando el formato de instruccién mostrado en la Figu-
ra 3.6. Como se ha comentado y se puede observar en dicha figura, el
campo destinado en este caso para el dato inmediato, Inm8, ocupa 8 bits.
Por tanto, y puesto que el dato inmediato se codifica en binario natu-
ral, el rango de ntimeros posibles es de [0,255]. A modo de ejemplo, la
instruccién «add r4, #45», se codifica como: «001 10 100 00101101».

> 3.11 Codifica las siguientes instrucciones a mano y comprueba con el
simulador que las has codificado correctamente:

3.11.1 «sub r2, #200»
3.11.2 «cmp rd4, #42»

3.6. Ejercicios

Ejercicios de nivel medio

> 3.12 ;Qué ocurre si se intenta ensamblar la siguiente instruccién:
«add r3, r4, #8»? ;Qué mensaje muestra el ensamblador? ;A qué
es debido?

> 3.13 Copia el siguiente programa en el simulador, ensdmblalo y com-
pleta la tabla que lo sigue. Para ello,) recarga el simulador cada
vez; 11) modifica a mano el contenido del registro r@ con el valor
indicado en la primera columna de la tabla; y 111) ejecuta el progra-
ma. Para anotar los resultados, sigue el ejemplo de la primera linea

3.6. Ejercicios 87

y una vez completada la tabla, contesta la pregunta que aparece

después.
03_neg_mvn.s =4
1 .text @ Zona de instrucciones
2 | main: neg rl, ro @rl <- -ro
3 mvn r2, r0 @ r2 <- NOT ro
4|stop: wfi

Valor ro ri r2

10 ©x0000000A OXFFFFFFF6 OXFFFFFFF5
-10

—252645136

3.13.1 Observando los resultados de la tabla anterior, ;hay alguna
relacion entre el niimero con el signo cambiado, rl, y el
numero complementado, r27 ; Cudl?

> 3.14 Codifica a mano las siguientes instrucciones y comprueba con el
simulador que las has codificado correctamente:

3.14.1 «add r3, r4, ra».
3.14.2 «add r3, r4, #5»

Ejercicios avanzados

> 3.15 Se quiere guardar en el registro rl el resultado de sumar 100 a
una variable. El siguiente c6digo, que no puede compilarse, inicia-
liza el registro r@ a 250 para después sumar el valor constante 100
al contenido de re. Comprueba qué problema presenta el siguiente
codigo y corrigelo para que en rl se almacene la suma de un valor
variable y el dato inmediato 100.

03_add_inm_error.s &
.text @ Zona de instrucciones
main: mov r@, #250 @ ro <- 250
add rl, r0, #1600 @ rl <- r0 + 100
stop: wfi

BwW N

http://lorca.act.uji.es/libro/introARM2016/codigo/03_neg_mvn.s
http://lorca.act.uji.es/libro/introARM2016/codigo/03_add_inm_error.s

3.6. Ejercicios

88

> 3.16 El siguiente programa aplica una mascara de 32 bits sobre el
contenido de r@ para poner todos sus bits a 0 salvo los bits 8, 9,
10 y 11, que mantienen su valor original. Cépialo en el simulador
y realiza los siguientes ejercicios.

TR W N =

main:

stop:

3.16.1

3.16.2

3.16.3

3.16.4

03_and_32bits.s =

.text @ Zona de instrucciones
ldr r0, =0x12345678 @ ro <- 0x1234 5678

ldr r1l, =0x00000F00 @ rl <- 0x0000 OF0OO

and ro, rl @ rd <- rd@ AND rl1

wfi

. Qué (pseudo-)instrucciones se han utilizado en el c6digo
fuente en ensamblador para cargar sendos valores de 32 bits
en los registros r@ y r1?

Ejecuta el programa. ;Qué valor, expresado en hexadeci-
mal, se almacena en el registro ro? ; Coincide con lo descrito
al principio de este ejercicio?

Modifica el cédigo anterior para que en lugar de aplicar una
méscara que mantenga los bits 8, 9, 10 y 11 del contenido
del registro r@ y ponga a 0 el resto, mantenga los mismos
bits, pero ponga a 1 los restantes. ;Qué mascara de bits
has cargado en el registro r1? ;Qué operaciéon logica has
realizado?

Modifica el cdédigo original para que en lugar de aplicar una
mascara que mantenga los bits 8, 9, 10 y 11 del contenido
del registro r@ y ponga a 0 el resto, mantenga los mismos
bits, pero invierta los bits restantes. ;Qué mascara de bits
has cargado en el registro r1? ;Qué operacién logica has
realizado?

Ejercicios adicionales

> 3.17 Copia el siguiente programa en el simulador, ejectitalo y realiza
los ejercicios propuestos.

U W N =

main:

stop:

03_asr.s =

.text @ Zona de instrucciones
ldr ro, =0xffffff4l @ ro <- oxffffff4l

mov rl, #4 @rl <-4

asr ro, rl @ro <-ro >4

wfi

http://lorca.act.uji.es/libro/introARM2016/codigo/03_and_32bits.s
http://lorca.act.uji.es/libro/introARM2016/codigo/03_asr.s

3.6. Ejercicios

89

3.17.1

3.17.2

3.17.3

3.174

3.17.5

3.17.6

3.17.7

i Qué valor acaba teniendo el registro r@? ;Se ha conservado
el signo del niimero cargado inicialmente en re?

Modifica el programa para comprobar su funcionamiento
cuando el niimero que se desplaza es positivo.

Modifica el programa propuesto originalmente para que
realice un desplazamiento de 3 bits, en lugar de 4. Como
se puede observar, la palabra original era OxFFFFFF41 y al
desplazarla se ha obtenido la palabra @xFFFFFFE8. Repre-
senta ambas palabras en binario y comprueba si la palabra
obtenida corresponde realmente al resultado de desplazar
OXFFFFFF41 3 bits a la derecha conservando su signo.

Como se ha visto, la instruccién «lsr», desplazamiento 16-
gico a derechas (logic shift right), también desplaza a la
derecha un determinado ntimero de bits el valor indicado.
Sin embargo, no tiene en cuenta el signo y rellena siempre
con ceros. Modifica el programa original para que utilice
la instruccién «lsr» en lugar de la «asr» ;Qué valor se
obtiene ahora en ro?

Modifica el cdédigo anterior para desplazar el contenido de
ro 2 bits a la izquierda. ;Qué valor acaba teniendo ahora
el registro r@ tras ejecutar el programa?

Siempre que no se produzca un desbordamiento, desplazar
n bits a la izquierda equivale a una determinada operacion
aritmética. ;A qué operacién aritmética equivale? ;A qué
equivale desplazar 1 bit a la izquierda? ;Y desplazar 2 bits?
.Y n bits?

Desplazar n bits a la derecha conservando el signo también
equivale a una determinada operacién aritmética. ;A qué
operacién aritmética equivale? ;A qué equivale desplazar
1 bit a la derecha? ;Y desplazar 2 bits? ;Y n bits?

(Nota: si el nimero es positivo el desplazamiento correspon-
de sitempre a la operacién indicada; sin embargo, cuando el
numero es negativo, el desplazamiento no produce siempre
el resultado ezxacto.)

> 3.18 Desarrolla un programa en ensamblador que multiplique por 5
dos nuimeros almacenados en los registros r@ y rl.
Para probar el programa, inicializa dichos registros con los niime-
ros 18 y —1215.

> 3.19 Desarrolla un programa que multiplique por 32 el nimero al-
macenado en el registro re sin utilizar operaciones aritméticas (es

3.6. Ejercicios

90

decir, no puedes utilizar la instruccién de multiplicacién, ni la de
suma,).

Para probar el programa, inicializa el registro r@ con la palabra
0x00000001.

> 3.20 Desarrolla un programa que modifique el valor de la palabra al-
macenada en el registro r@ de tal forma que los bits 11, 7 y 3 se
pongan a cero mientras que los bits restantes conserven el valor
original.
Para probar el programa, inicializa el registro r® con el valor
OXOOFF FOFO.

CArPiTULO

Instrucciones de transferencia de

datos
Indice
4.1. Instruccionesdecarga 92
4.2. Instrucciones de almacenamiento 99
4.3. Modos de direccionamiento y formatos de instruc-
cionde ARM L o 103
4.4. FEjercicios o e 111

En el Capitulo 2 se vio, ademdas de una introducciéon al ensambla-
dor de ARM, al simulador QtARMSim y al uso de constantes, cémo
reservar espacio en memoria para las variables que fuera a utilizar un
programa y cémo inicializar dicho espacio. El Capitulo 3 abordé las ins-
trucciones de transformacién de datos —aritméticas, légicas y de des-
plazamiento—. Tal como se vio en dicho capitulo, las instrucciones de
transformacion requerian que los datos se hubieran cargado previamente
en registros o formaran parte de la propia instrucciéon. De hecho, se uti-
liz6 frecuentemente en dicho capitulo una instrucciéon de transferencia:
«mov rd, #Inm8», que carga un dato inmediato de 8 bits en el registro
indicado.

Este capitulo se centra en las instrucciones de transferencia de datos,
como la «mov rd, #Inm8» vista en el capitulo anterior. Estas instruccio-
nes permiten transferir informaciéon entre la memoria y los registros,
y viceversa, distinguiéndose, segun el destino de la transferencia, entre
instrucciones de carga, las que transfieren informacion a los registros,

91

4.1. Instrucciones de carga

92

e instrucciones de almacenamiento, las que transfieren informacién
a la memoria.

En la arquitectura ARM, las instrucciones de transferencia de da-
tos son las tinicas que pueden acceder a la memoria. Esta decisién de
disefio, comin a muchas arquitecturas RISC, implica que para poder
realizar operaciones con datos almacenados en memoria, primero serd
necesario cargarlos en registros y, una vez realizadas las operaciones, se
debera almacenar su resultado en memoria. Puede parecer contraprodu-
cente el que en lugar de disponer de instrucciones maquina que operen
directamente con memoria, sea necesario que el procesador, antes de de
poder realizar la operacion, tenga que ejecutar instrucciones previas para
cargar los operandos requeridos en registros y, ademas, una vez realiza-
das las operaciones correspondientes, deba ejecutar més instrucciones
para almacenar los resultados en memoria. Sin embargo, esta decision
permite que la arquitectura disponga de un juego de instrucciones mas
simple, por un lado, y que las organizaciones de dicha arquitectura pue-
dan optimizar ficilmente la ejecucion canalizada (pipelined execution)
de las instrucciones de transformaciéon —gracias a que siempre operan
con registros o con informacién que esta en la propia instruccion—. Las
arquitecturas que utilizan este enfoque reciben el nombre de arquitec-
turas de carga/almacenamiento.

Este capitulo comienza mostrando las instrucciones de carga pro-
porcionadas por la arquitectura Thumb de ARM, continia con las ins-
trucciones de almacenamiento y termina describiendo los formatos de
instruccién y los modos de direccionamiento utilizados por estas ins-
trucciones.

4.1. Instrucciones de carga

Como se ha comentado, las instrucciones de carga son las que trans-
fieren informacién a los registros. Esta informacién puede estar en la
propia instruccién o en memoria. El préximo subapartado muestra como
cargar datos constantes en un registro —tanto de la propia instrucciéon
como de memoria—, los siguientes muestran como cargar datos variables
de distintos tamanos almacenados en memoria.

4.1.1. Carga de datos constantes

La instruccion «mov rd, #Inm8», utilizada profusamente en el capi-
tulo anterior, permite cargar una dato inmediato que quepa en un byte
en el registro rd (es decir, [rd] <— #Inm8).

«mov rd, #Inm8»

4.1. Instrucciones de carga

93

> 4.1 Copia el siguiente cdédigo, ensamblalo —no lo ejecutes— y realiza
los ejercicios mostrados a continuacion.

04_mov.s =

1 .text
2 | main: mov r@, #0x12
3 wfi

4.1.1 Modifica a mano el contenido del registro r@ para que tenga
el valor 0x12345678 (haz doble clic sobre el contenido del
registro e introduce dicho ntimero).

4.1.2 Después de modificar a mano el registro ro, ejecuta el pro-
grama anterior. ;Qué valor tiene ahora el registro ro? ;Se
ha modificado todo el contenido del registro o solo su byte
de menor peso?

Si el dato inmediato que se quiere cargar en un registro cabe en un
byte, «mov» es la instruccién idénea para hacerlo. Sin embargo, en el caso
de tener que cargar un dato que ocupe mas de un byte, no es posible uti-
lizar dicha instruccion. Como suele ser habitual tener que cargar datos
constantes mas grandes en registros, el ensamblador de ARM proporcio-
na una pseudo-instruccion que si puede hacerlo: «ldr rd, =Inm32». Di-
cha pseudo-instruccién permite cargar datos inmediatos de hasta 32 bits.

Recordando lo comentado en el Capitulo 2, las instrucciones maqui-
na de ARM Thumb ocupan generalmente 16 bits (y alguna, 32 bits).
Sabiendo lo anterior, jpor qué «ldr rd, =Inm32» no podria ser directa-
mente una instruccién maquina y la tiene que proporcionar el ensambla-
dor como pseudo-instruccién? Porque puesto que el dato inmediato ya
ocupa 32 bits, no quedarian bits disponibles para codificar los restantes
elementos de dicha instruccién maquina. Asi pues, como el operando
inmediato de 32 bits ya estaria ocupando todo el espacio disponible,
no seria posible codificar en la instruccién cudl es el registro destino,
ni dedicar parte de la instruccién para guardar el cédigo de operacion
—que ademads de identificar la operacién que se debe realizar, debe per-
mitir al procesador distinguir a una instrucciéon de las restantes de su
repertorio—.

., Qué hace el programa ensamblador cuando se encuentra con la
pseudo-instruccién «ldr rd, =Inm32»7 Depende. Si el dato inmediato
puede codificarse en un byte, sustituye la pseudo-instruccién por una
instruccién «mov» equivalente. Si por el contrario, el dato inmediato
necesita mas de un byte para codificarse: 1) copia el valor del dato

«ldr rd, =Inm32»

http://lorca.act.uji.es/libro/introARM2016/codigo/04_mov.s

4.1. Instrucciones de carga

94

inmediato en la memoria, a continuaciéon del cédigo del programa, y
11) sustituye la pseudo-instruccién por una instruccién de carga relativa
al PC.

El siguiente programa muestra un ejemplo en el que se utiliza la
pseudo-instruccién «ldr rd, =Inm32». En un primer caso, con un valor
que cabe en un byte. En un segundo caso, con un valor que ocupa una
palabra entera.

> 4.2 Copia el siguiente cédigo, ensamblalo —no lo ejecutes— y con-
testa a las preguntas que se muestran a continuacién.

04_ldr_value.s &
.text
main: ldr rl, =0xFF
ldr r2, =0x10203040
wfi

BwWw N =

4.2.1 La pseudo-instruccion «ldr rl, =0xFF», ja qué instruccion
ha dado lugar al ser ensamblada?

4.2.2 La pseudo-instrucciéon «ldr r2, =0x10203040», ;a qué ins-
truccion ha dado lugar al ser ensamblada?

4.2.3 Durante la ejecucién de la instruccion anterior, tras la fase
de actualizacion del PC, este pasara a valer 0x0000 1004. Por
otro lado, como has podido ver en la pregunta anterior, la
instruccién anterior tiene un dato inmediato con valor 4.
.Cuanto es 0x0000 1004 + 47

4.2.4 Localiza el niimero 8x10203040 en la memoria ROM, ;déon-
de esta? ;Coincide con el nimero que has calculado en la
pregunta anterior?

4.2.5 Por ultimo, ejecuta el programa paso a paso y anota qué
valores se almacenan en el registro rly en el registro r2.

La pseudo-instrucciéon «ldr rd, =Inm32», tal y como se ha visto, per-
mite cargar en un registro un valor constante escrito en el programa,
pero en ocasiones, lo que se quiere cargar en un registro es la direcciéon
de memoria de una variable utilizando directamente su etiqueta. Para
cargar en un registro la direccién de memoria dada por una etiqueta, se
puede utilizar la misma pseudo-instruccién pero indicando la etiqueta
en cuestién, en lugar de una constante numérica, «ldr rd, =Labely.

«ldr rd, =Label»

http://lorca.act.uji.es/libro/introARM2016/codigo/04_ldr_value.s

4.1. Instrucciones de carga 95

> 4.3 Copia el siguiente programa, ensamblalo —no lo ejecutes— y con-
testa a las preguntas que se muestran a continuacion.

04_1dr_label.s =

1 .data

2 (wordl: .word 0x10203040
3|(word2: .word 0x11213141
4 |word3: .word 0x12223242
5

6 .text

7 |main: ldr r0, =wordl
8 ldr rl, =word2
9 ldr r2, =word3
10 wfi

4.3.1 ;Qué hacen las anteriores instrucciones?

4.3.2 Ejecuta el programa, ;qué se ha almacenado en los registros
re, rl y r2?

4.3.3 Anteriormente se ha comentado que las etiquetas se utilizan
para hacer referencia a la direccion de memoria en la que
se han definido. Sabiendo que en los registros r@, rl y r2
se ha almacenado el valor de las etiquetas «wordl», «word2»
y «word3», respectivamente, jse confirma o desmiente dicha
afirmacion?

4.1.2. Carga de palabras

Tras ver en el Subapartado 4.1.1 ¢cémo se pueden cargar datos cons-
tantes, en este subapartado y siguientes se verd cémo cargar datos va-
riables de distintos tamafios, empezado por cémo cargar palabras. Para «ldr rd, [...]»
cargar una palabra de memoria a registro se puede utilizar una de las
siguientes instrucciones:

» «ldr rd, [rbl»,
s «ldr rd, [rb, #O0ffset5]», y
= «ldr rd, [rb, rol».

Las anteriores instrucciones solo se diferencian en la forma en la
que indican la direccién de memoria desde la que se quiere cargar una
palabra en el registro rd, es decir, en sus modos de direccionamiento.

http://lorca.act.uji.es/libro/introARM2016/codigo/04_ldr_label.s

4.1. Instrucciones de carga

96

En la primera variante, «ldr rd, [rbl», la direccién de memoria des-
de la que se quiere cargar una palabra en el registro rd es la indicada
por el contenido del registro rb (es decir, [rd] < [[rb]]). Enp la segun-
da variante, «ldr rd, [rb, #0ffset5]», la direccién de memoria desde
la que se quiere cargar una palabra en el registro rd se calcula como
la suma del contenido del registro rb y un desplazamiento inmediato,
«0ffset5» (es decir, [rd] < [[rb] + 0ffset5]). El desplazamiento inme-
diato, «0ffset5», debe ser un niimero multiplo de 4 entre 0 y 124, puesto
que los datos deben estar alineados. Conviene observar que la variante
anterior, «ldr rd, [rbl», esen realidad una pseudo-instrucciéon que serd
sustituida por el ensamblador por una instrucciéon de este tipo con un
desplazamiento de 0, es decir, por «ldr rd, [rb, #01». Por ltimo, en
la tercera variante, «ldr rd, [rb, rol», la direccién de memoria desde
la que se quiere cargar una palabra en el registro rd se calcula como la
suma del contenido de los registros rb y ro (es decir, [rd] < [[rb] + ro]).
En el siguiente ejercicio se muestra un programa de ejemplo en el que
se utilizan estas tres instrucciones.

> 4.4 Copia el siguiente programa, ensdmblalo —no lo ejecutes— y con-
testa a las preguntas que se muestran a continuacién.

04_1ldr_rb.s &

1 .data

2 (wordl: .word 0x10203040

3|(word2: .word 0x11213141

4 {word3: .word 0x12223242

5

6 .text

7 |main: ldr r0, =wordl @ r0 <- 0x20070000
8 mov rl, #8 @rl<-38
9 ldr r2, [r0O]

10 ldr r3, [r0,#4]

11 ldr r4, [r0O,rl]

12 wfi

4.4.1 La instruccién «ldr r2, [r0]»:
e ;En qué instrucciéon maquina se ha convertido?
e ;De qué direcciéon de memoria va a cargar la palabra?
e ;Qué valor se va a cargar en el registro r2?

4.4.2 Ejecuta el coédigo paso a paso hasta ejecutar la instruccion

«ldr r2, [r@]» y comprueba si es correcto lo que has con-
testado en el ejercicio anterior.

4.4.3 La instruccién «ldr r3, [r0Q, #4]1»:

http://lorca.act.uji.es/libro/introARM2016/codigo/04_ldr_rb.s

4.1. Instrucciones de carga

97

e ;De qué direccién de memoria va a cargar la palabra?

e ;Qué valor se va a cargar en el registro r3?

4.4.4 Ejecuta un paso mas del programa y comprueba si es correc-
to lo que has contestado en el ejercicio anterior.

4.4.5 La instrucciéon «ldr r4, [r0, rll»:

e ;De qué direccién de memoria va a cargar la palabra?

e ;Qué valor se va a cargar en el registro r4?

4.4.6 Ejecuta un paso mas del programa y comprueba si es correc-
to lo que has contestado en el ejercicio anterior.

4.1.3. Carga de bytes y medias palabras

La instruccién «ldry, vista en los apartados anteriores, permite car-
gar una palabra en un registro. Sin embargo, hay datos que caben per-
fectamente en unidades de informacién més pequenias que una palabra:
ya sea en un byte o en una media palabra. Para evitar que dichos datos
malgasten espacio de memoria, suelen almacenarse utilizando el espacio
que realmente requieren. Asi que para poder operar con dichos datos, la
arquitectura ARM proporciona instrucciones capaces de cargar un byte
o una media palabra de memoria en un registro.

Cuando se carga una palabra de memoria a un registro, simplemente
se copia el contenido de los 32 bits de memoria a los 32 bits del registro.
De esta forma, el registro pasa a tener el mismo contenido que la palabra
de memoria, independientemente del significado o del uso que se vaya a
dar a esos 32 bits. Sin embargo, cuando se carga un byte de memoria a
un registro, los 8 bits de memoria se copian en los 8 bits de menor peso
del registro, pero, jqué se hace con los 24 bits de mayor peso del registro?
Una posible solucién seria simplemente la de poner los 24 bits de mayor
peso a 0. Si se opta por esta solucién, todo ird bien mientras el dato
cargado no sea un nimero negativo, ya que en dicho caso, el contenido
del registro seria un nimero positivo, cuando no deberia serlo. Asi, si el
dato almacenado en memoria no tiene signo —porque no es un nimero
o porque es un nimero natural—, es suficiente con poner a 0 los 24 bits
de mayor peso del registro; pero si el dato almacenado tiene signo —es
decir, puede ser positivo o negativo—, los 24 bits de mayor peso deberan
rellenarse con 0 si el niimero es positivo, o con 1 si el nlimero es negativo
—esta operacién recibe el nombre de extensiéon de signo—. Por lo
tanto, cuando se vaya a cargar un byte, el ensamblador debera permitir
especificar si se quiere extender o no su signo —sera el programador,
dependiendo de si la variable en cuestion corresponde a ntmero con
signo o no, quien active la extensiéon de signo o no—. El razonamiento

La extension de signo
es la operacién que in-
crementa la cantidad
de bits de un nimero
preservando el signo y
el valor del niimero ori-
ginal.

https://es.wikipedia.org/wiki/Extensi�n_de_signo

© 0 N O U ke W N =

e e e e
N O O W N = O

4.1. Instrucciones de carga

98

anterior también se aplica cuando en lugar de un byte se quiere cargar
una media palabra.

En el cuadro siguiente se muestran las instrucciones proporcionadas
por ARM para cargar bytes sin y con extension de signo. Hay que tener
en cuenta que el desplazamiento «0ffset5», utilizado en la segunda va-
riante debe ser un ntimero comprendido entre 0 y 31. Ademaés, las dos
primeras variantes no tienen una instruccién equivalente que cargue vy,
a la vez, extienda el signo. Para extender el signo en estos dos casos
es necesario, después de ejecutar la instrucciéon «ldrby» correspondiente,
ejecutar la instruccién «sxtb rd, rm», que extiende el signo del byte de
menor peso del registro rm, almacenando el resultado en el registro rd.

Sin extension de signo Con extensién de signo

«ldrb rd, [rb]» «ldrb rd, [rb]»
«sxtb rd, rd»

«ldrb rd, [rb, #0ffset5]» «ldrb rd, [rb, #0ffset5]»
«sxtb rd, rd»

«ldrb rd, [rb, rol» «ldrsb rd, [rb, rol»

El siguiente programa muestra varios ejemplos de carga de bytes.

04_1drb.s &
.data
bytel: .byte -15
byte2: .byte 20
byte3: .byte 40
.text
main: ldr r0, =bytel @ r0 <- 0x20070000
mov rl, #2 @rl <-2
@ Sin extensién de signo
ldrb r2, [r0]
ldrb r3, [r0,#1]
ldrb r4, [r0O,rl]
@ Con extensidn de signo
ldrb r5, [r0O]
sxtb r5, r5
ldrsb r6, [rO,rl]
stop: wfi

En el cuadro siguiente se muestran las instrucciones proporcionadas
por ARM para cargar medias palabras sin y con extensién de signo. Hay
que tener en cuenta que el desplazamiento «0ffset5», utilizado en la se-
gunda variante debe ser un niimero multiplo de 2 comprendido entre 0
y 62. Ademads, y tal y como ocurria con las instrucciones de carga de

«sxtb rd,

rm»

http://lorca.act.uji.es/libro/introARM2016/codigo/04_ldrb.s

© 0 N O U e W N =

L e e e T
N O Ot W N = O

4.2. Instrucciones de almacenamiento

99

bytes, las dos primeras variantes no tienen una instruccién equivalente

que cargue y, a la vez, extienda el signo de la media palabra. Para exten-

der el signo en estos dos casos es necesario, después de ejecutar la ins-

truccion «ldrhy correspondiente, ejecutar la instruccién «sxth rd, rmy, «sxth rd,
que extiende el signo de la media palabra de menor peso del registro rm,

almacenando el resultado en el registro rd.

Sin extension de signo Con extensién de signo

«ldrh rd, [rb]» «ldrh rd, [rb]»
«sxth rd, rd»

«ldrh rd, [rb, #0ffset5]» «ldrh rd, [rb, #0ffset5]»
«sxth rd, rd»

«ldrh rd, [rb, rol» «ldrsh rd, [rb, rol»

El siguiente programa muestra varios ejemplos de carga de medias
palabras.

04_1drh.s
.data
halfl: .hword -1500
half2: .hword 2000
half3: .hword 4000
.text
main: ldr r0, =halfl @ rd <- 0x20070000
mov rl, #4 @rl <-4
@ Sin extensién de signo
ldrh r2, [r0]
ldrh r3, [r0,#2]
ldrh r4, [r0O,rl]
@ Con extensién de signo
ldrh r5, [r0]
sxth r5, r5
ldrsh r6, [rO,rl]
stop: wfi

4.2. Instrucciones de almacenamiento

Como se ha comentado en la introduccién de este capitulo, las ins-
trucciones de almacenamiento son las que transfieren informacién a la
memoria. En este caso, la informaciéon que se transfiere parte siempre
de un registro. Los siguientes subapartados muestran cémo almacenar
datos variables de distintos tamafnos en memoria.

rm»

http://lorca.act.uji.es/libro/introARM2016/codigo/04_ldrh.s

4.2. Instrucciones de almacenamiento

100

4.2.1. Almacenamiento de palabras

Para almacenar una palabra en memoria desde un registro se puede
utilizar una de las siguientes instrucciones:

m «str rd, [rb]»,
= «str rd, [rb, #0ffset5]» vy
s «str rd, [rb, rol».

Las anteriores instrucciones solo se diferencian en la forma en la que
indican la direccién de memoria en la que se quiere almacenar el conteni-
do del registro rd. En la primera variante, «str rd, [rbl», la direcciéon
de memoria en la que se quiere almacenar el contenido del registro rd
es la indicada por el contenido del registro rb (es decir, [[rb]] < [rd]).
En la segunda variante, «str rd, [rb, #0ffset5]», la direccién de me-
moria en la que se quiere almacenar el contenido del registro rd se cal-
cula como la suma del contenido del registro rb y un desplazamiento
inmediato, «0ffset5» (es decir, [[rb] + 0ffset5] < [rd]). El desplaza-
miento inmediato, «0ffset5», debe ser un niimero multiplo de 4 entre
0 y 124. Conviene observar que la variante anterior, «str rd, [rb]» es
en realidad una pseudo-instruccién que serd sustituida por el ensam-
blador por una instrucciéon de este tipo con un desplazamiento de 0,
es decir, por «str rd, [rb, #0]». Por ultimo, en la tercera variante,
«str rd, [rb, rol», la direccion de memoria en la que se quiere alma-
cenar el contenido del registro rd se calcula como la suma del contenido
de los registros rb y ro (es decir, [[rb] + [ro]] < [rd]). En el siguiente
ejercicio se muestra un programa de ejemplo en el que se utilizan estas
tres instrucciones.

> 4.5 Copia el siguiente programa, ensamblalo —no lo ejecutes— y con-
testa a las preguntas que se muestran a continuacién.

04_str_rb.s &

1 .data

2 |wordl: .space 4

3|word2: .space 4

4 |word3: .space 4

5

6 .text

7 |main: ldr r0, =wordl @ r0 <- 0x20070000
8 mov rl, #8 @rl <-8
9 mov r2, #16 @r2 <- 16
10 str r2, [rO]

11 str r2, [rO,#4]

«str rd,

[...1»

http://lorca.act.uji.es/libro/introARM2016/codigo/04_str_rb.s

4.2. Instrucciones de almacenamiento

101

12 str r2, [r0O,rl]
13
14 | stop: wfi

4.5.1 La instruccion «str r2, [rO]»:

e ;En qué instruccién méaquina se ha convertido?

e ;En qué direccién de memoria va a almacenar la pala-
bra?

e ;Qué valor se va a almacenar en dicha direccién de me-
moria?

4.5.2 FEjecuta el c6digo paso a paso hasta la instruccién «str r2, [rO]»

inclusive y comprueba si es correcto lo que has contestado
en el ejercicio anterior.

4.5.3 La instruccién «str r2, [rO, #4]»:

e ;En qué direccién de memoria va a almacenar la pala-
bra?

e ;Qué valor se va a almacenar en dicha direccién de me-
moria?

4.5.4 FEjecuta un paso mas del programa y comprueba si es correc-
to lo que has contestado en el ejercicio anterior.

4.5.5 La instruccién «str r2, [r0, rl]»:

e ;En qué direccion de memoria va a almacenar la pala-
bra?

e ;Qué valor se va a almacenar en dicha direccién de me-
moria?

4.5.6 Ejecuta un paso mas del programa y comprueba si es correc-
to lo que has contestado en el ejercicio anterior.

4.2.2. Almacenamiento de bytes y medias palabras

Cuando se almacenan bytes o medias palabras, no ocurre como en la
carga de bytes o medias palabras, donde era necesario extender el signo
en el caso de que los datos tuvieran signo. En este caso simplemente se
va a copiar el contenido del byte o de la media palabra de menor peso
de un registro a una posicién de memoria del mismo tamaifo.

Para almacenar bytes o medias palabras se pueden utilizar las mis-
mas variantes que las descritas en el apartado anterior. Para almacenar
bytes se pueden utilizar las siguientes variantes de la instruccién «strb»
(teniendo en cuenta que, como ya se comenté en el caso de la instruccién

© 0 N O U W NN =

e e =
w N = O

© 0 N O U ke W N =

—
(=)

4.2. Instrucciones de almacenamiento 102

«ldrby, el desplazamiento «0ffset5» debe ser un niimero comprendido
entre 0 y 31):

= «strb rd, [rbl»,
s «strb rd, [rb, #0ffset5]», y
» «strb rd, [rb, ro]».

El siguiente programa muestra el uso de dichas instrucciones:

04_strb.s &
.data
bytel: .space 1
byte2: .space 1
byte3: .space 1
.text
main: ldr r0, =bytel @ rd <- 0x20070000
mov rl, #2 @rl <-2
mov r2, #10 @r2 <- 10
strb r2, [r0]
strb r2, [r0,#1]
strb r2, [r0O,rl]
stop: wfi

Por su parte, ara almacenar medias palabras se pueden utilizar las
siguientes variantes de la instruccién «strhy (teniendo en cuenta que, co-
mo ya se comenté en el caso de la instruccién «ldrhy, el desplazamiento
«0ffset5» debe ser un nimero miltiplo de 2 comprendido entre 0 y 62):

» «strh rd, [rbl»,

m «strh rd, [rb, #0ffset5]», y

u «strh rd, [rb, ro]l».

El siguiente programa muestra el uso de dichas instrucciones:

04_strh.s &
.data

hwordl:
hword2:
hword3:

main:

.Space 2
.space 2
.Sspace 2

.text

ldr ro,
mov rl,
mov r2,
strh r2,

=hwordl @ r@ <- 0x20070000

#4
#10

[ro]

@rl <-4
@ r2 <- 10

http://lorca.act.uji.es/libro/introARM2016/codigo/04_strb.s
http://lorca.act.uji.es/libro/introARM2016/codigo/04_strh.s

11
12
13

4.3. Modos de direccionamiento y formatos de instrucciéon de ARM

103

strh r2, [ro,#2]
strh r2, [ro,rl]
stop: wfi

4.3. Modos de direccionamiento y formatos de
instruccion de ARM

En este capitulo se han visto varias instrucciones de ARM que uti-
lizan los siguientes modos de direccionamiento: 1) el direccionamiento
indirecto con desplazamiento, utilizado, por ejemplo, por el operando
fuente de «ldr rd, [rb, #0ffset5]» 1I) el direccionamiento relativo al
contador de programa, utilizado, por ejemplo, por el operando fuente
de la instruccién «ldr rd, [PC, #0ffset8] >>1, y 111) el direccionamiento
indirecto con registro de desplazamiento, utilizado, por ejemplo, por el
operando fuente de «ldr rd, [rb, rol». Estos modos, que ya se vieron
de forma genérica en el Apartado 1.2.5, se describen con méas detalle
y particularizados a la arquitectura ARM en los Apartados 4.3.1, 4.3.2
y 4.3.3, respectivamente.

4.3.1. Direccionamiento indirecto con desplazamiento

En el modo de direccionamiento indirecto con desplazamiento, la di-
recciéon efectiva del operando es una direccién de memoria que se obtiene
sumando el contenido de un registro y un desplazamiento especificado en
la propia instruccién. Por tanto, si un operando utiliza este modo de di-
reccionamiento, el formato de instruccién deberd proporcionar dos cam-
pos para dicho operando: uno para especificar el registro y otro para el
desplazamiento inmediato (véase la Figura 4.1). Este modo de direccio-
namiento se utiliza en las instrucciones de carga y almacenamiento para
el operando fuente y destino, respectivamente. La instruccién de carga,
«ldr rd, [rb, #0ffset5]», realiza la operacion [rd] « [[rb] +0ffset5]?,
por lo que consta de dos operandos. Uno es el operando destino, que es
el registro rd. El modo de direccionamiento utilizado para dicho ope-
rando es el directo a registro. El otro operando es el operando fuente,
que se encuentra en la posicién de memoria cuya direccién se calcula
sumando el contenido del registro rb y un desplazamiento inmediato,

La instruccién «ldr rd, [PC, #0ffset8]» no se ha visto directamente en es-
te capitulo, se genera al ensamblar las pseudo-instrucciones «ldr rd, =Inm32» y
«ldr rd, =Label»

2La codificacién del desplazamiento, como se vera méas adelante, no incluirg el bit
o los 2 bits de menor peso cuando vayan a estar siempre a 0 debido a que los accesos
a medias palabras y palabras son alineados a miltiplos de 2 y de 4, respectivamente.

4.3. Modos de direccionamiento y formatos de instrucciéon de ARM 104

0ffset5. El modo de direccionamiento utilizado para este segundo ope-
rando es el indirecto con desplazamiento. Por otro lado, la instruccion
«str rd, [rb, #0ffset5]» funciona de forma parecida.

Instruccién

[__[ors[re] |

Operando

Registros

Memoria

Figura 4.1: Modo de direccionamiento indirecto con desplazamiento. En
este modo, la direccién efectiva del operando es una posicién de memo-
ria. En la instruccién se codifica el nimero del registro rb y un dato
inmediato, 0ffset5, la suma del contenido de dicho registro y el dato in-
mediato proporciona la direccién de memoria en la que esta el operando

> 4.6 Contesta las preguntas que aparecen a continuacién con respecto
a la instruccién «str rd, [rb, #0ffset5]».

4.6.1 ;Cuéantos operandos tiene dicha instruccién?
4.6.2 ;Cuél es el operando fuente? ;Cudl es el operando destino?

4.6.3 ;Como se calcula la direccién efectiva del operando fuente?
., Qué modo de direccionamiento se utiliza para dicho ope-
rando?

4.6.4 ;Coémo se calcula la direccion efectiva del operando destino?
. Qué modo de direccionamiento se utiliza para dicho ope-
rando?

4.3. Modos de direccionamiento y formatos de instrucciéon de ARM

105

4.3.2. Direccionamiento relativo al contador de
programa

El direccionamiento relativo al contador de programa es una variante
del direccionamiento indirecto con desplazamiento, visto en el apartado
anterior, en el que el registro base es el contador de programa (PC).
Este modo especifica la direccién efectiva del operando como la suma del
contenido del contador de programa y un desplazamiento codificado en la
propia instruccion. Es especialmente 1til para acceder a operandos que se
encuentran en las inmediaciones de la instrucciéon que se esté ejecutando.
Una ventaja de este modo, que se vera también mas adelante cuando
se comente el formato de instrucciéon en el que se utiliza, es que tan
solo se debe proporcionar un campo para especificar el desplazamiento,
puesto que el registro base siempre es el PC, lo que permite dedicar
mas bits de la instruccién para codificar el desplazamiento. Este modo
de direccionamiento lo utiliza la instruccién «ldr rd, [PC, #0ffset8]»
que carga en el registro rd el contenido de la direccién de memoria
dada por la suma del registro PC y el desplazamiento #0ffset8. Esta
instruccién, que no se ha visto tal cual en este capitulo, la genera el
ensamblador al procesar las pseudo-instrucciones «ldr rd, =Inm32» y
«ldr rd, =Label».

4.3.3. Direccionamiento indirecto con registro de
desplazamiento

En el modo de direccionamiento relativo a registro con registro de
desplazamiento, la direccion efectiva del operando es una direcciéon de
memoria que se obtiene sumando el contenido de dos registros. Por tan-
to, si un operando utiliza este modo de direccionamiento, el formato de
instruccién debera proporcionar dos campos para dicho operando: uno
para cada registro. Como se puede ver, es muy similar al relativo a regis-
tro con desplazamiento. La diferencia radica en que el desplazamiento
se obtiene de un registro en lugar de un dato inmediato.

4.3.4. Formato de las instrucciones de
carga/almacenamiento de bytes y palabras con
direccionamiento indirecto con desplazamiento

Este formato de instruccién lo utilizan las siguientes instrucciones de
carga y almacenamiento: «ldry, «stry, «ldrb» y «strby». Como se puede
observar en la Figura 4.2, estd formado por los siguientes campos:

= OpCode: campo de 3 bits con el valor 011,, que permitirda a la
unidad de control saber que la instruccién es una de las soportadas
por este formato de instruccién.

4.3. Modos de direccionamiento y formatos de instrucciéon de ARM

106

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1|B|L Offsetb Rb Rd

B Byte/Word: 1, transferir byte; 0, palabra.
L Load/Store: 1, cargar; 0, almacenar.
Offset5 Dato inmediato.

Rb Registro base.

Rd Registro fuente/destino.

Figura 4.2: Formato de las instrucciones de carga/almacenamiento de
bytes y palabras con direccionamiento indirecto con desplazamiento:
«ldr rd, [rb, #0ffset5]», «str rd, [rb, #0ffset51»,

«ldrb rd, [rb, #0ffset5]» y «strb rd, [rb, #0ffset5]»

B: se utiliza para indicar si se debe transferir un byte (B = 1) o
una palabra (B = 0).

= L: se utiliza para indicar si se trata de una instruccién de carga
(L =1) o de almacenamiento (L = 0).

» Offseth: se utiliza para codificar el desplazamiento que junto con
el contenido del registro rb proporciona la direccién de memoria
de uno de los operandos.

= Rb: se utiliza para codificar el registro base, cuyo contenido se usa
junto con el valor de 0ffset5 para calcular la direccién de memoria
del operando indicado en el campo anterior.

= Rd: se utiliza para codificar el registro destino o fuente en el que
se encuentra el otro operando (dependiendo de si la instruccién es
de carga o de almacenamiento, respectivamente).

El desplazamiento inmediato 0ffset5 codifica un niimero sin signo
con 5 bits. Por tanto, dicho campo permite almacenar un ntimero entre
0 y 31. En el caso de las instrucciones «ldrb» y «strb», que cargan y
almacenan un byte, dicho campo codifica directamente el desplazamien-
to. Asi por ejemplo, la instruccién «ldrb r3, [r@, #31]» carga en el
registro r3 el byte que se encuentra en la direccion de memoria dada por
r0 + 31 y el nimero 31 se codifica tal cual en la instruccion: «111119».

En el caso de las instrucciones de carga y almacenamiento de pala-
bras es posible aprovechar mejor los 5 bits del campo si se tiene en cuenta
que una palabra solo puede ser leida o escrita si su direccién de memoria
es multiplo de 4. Como las palabras deben estar alineadas en multiplos
de 4, si no se hiciera nada al respecto, habria combinaciones de dichos
5 bits que no podrian utilizarse (1,2,3,5,6,7,9,...,29,30,31). Por otro

Conviene tener en
cuenta que la optimi-
zacion comentada en
este parrafo es posible
porque la arquitectura
ARM fuerza a que los
datos estén alineados
en memoria.

4.3. Modos de direccionamiento y formatos de instrucciéon de ARM

107

lado, aquellas combinaciones que si serian vélidas (0,4, 8,12, ...,24,28),
al ser multiplos de 4 tendrian los dos tltimos bits siempre a 0 (0 =
000002, 4 = 0001002, 8 = 0010002, 12 = 001100s...). Por dltimo, el
desplazamiento posible, si se cuenta en niimero de palabras, seria tni-
camente de [0, 7], lo que limitarfa bastante la utilidad de este modo de
direccionamiento. Teniendo en cuenta todo lo anterior, ;como se podrian
aprovechar mejor los 5 bits del campo 0ffset5 en el caso de la carga y
almacenamiento de palabras? Simplemente no malgastando los 2 bits de
menor peso del campo 0ffset5 para almacenar los 2 bits de menor peso
del desplazamiento —que se sabe que siempre serdn 0—. Al hacerlo asi,
en lugar de almacenar los bits 0 al 4 del desplazamiento en el campo
0ffset5, se podrian almacenar los bits del 2 al 6 del desplazamiento en
dicho campo. De esta forma, se estarian codificando 7 bits de desplaza-
miento utilizando tnicamente 5 bits —ya que los 2 bits de menor peso
se sabe que son 0—. Cémo es facil deducir, al proceder de dicha forma, no
solo se aprovechan todas las combinaciones posibles de 5 bits, sino que
ademas el rango del desplazamiento aumenta de [0, 28] bytes a [0, 124]
—o lo que es lo mismo, de [0, 7] palabras a [0, 31] palabras—.

., Coémo se codificaria un desplazamiento de, por ejemplo, 20 bytes
en una instruccion de carga de bytes?, ;v en una de carga de palabras?
En la de carga de bytes, p.e., «ldrb rl, [r0, #201»), el nimero 20
se codificaria tal cual en el campo 0ffset5. Por tanto, en 0ffset5 se
pondria directamente el ntimero 20 con 5 bits: 101002. Por el contrario,
en una instrucciéon de carga de palabras, p.e., «ldr rl, [r0, #20]», el
ntmero 20 se codificaria con 7 bits y se guardarian en el campo 0ffset5
tinicamente los bits del 2 al 6. Puesto que 20 = 00101002, en el campo
0ffset5 se almacenaria el valor 001013 —o lo que es lo mismo, 20/4 =

> 4.7 Utiliza el simulador para obtener la codificacién de la instruc-
cién «ldrb r2, [r5, #121». ;Como se ha codificado, en binario, el
campo 0ffset57?

> 4.8 Utiliza el simulador para obtener la codificaciéon de la instruc-
cion «ldr r2, [r5, #12]1». ;Como se ha codificado, en binario, el
campo 0ffset5?

4.3.5. Formato de las instrucciones de
carga/almacenamiento de medias palabras con
direccionamiento indirecto con desplazamiento

Las instrucciones de carga y almacenamiento de medias palabras se
codifican con un formato de instruccién (véase Figura 4.3) ligeramen-

4.3. Modos de direccionamiento y formatos de instrucciéon de ARM

108

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 O|L Offsetb Rb Rd

L Load/Store: 1, cargar; 0, almacenar.
Offset5 Dato inmediato.

Rb Registro base.

Rd Registro fuente/destino.

Figura 4.3: Formato de las instrucciones de carga/almacenamiento de
medias palabras con direccionamiento indirecto con desplazamiento:
«ldrh rd, [rb, #0ffset5]» y «strh rd, [rb, #0ffset5]»

te distinto al de las instrucciones de carga y almacenamiento de bytes
y palabras (visto en la Figura 4.2). Aunque como se puede observar,
ambos formatos de instruccion tan solo se diferencian en los 4 bits de
mayor peso. En el caso del formato para bytes y palabras, los 3 bits
mas altos tomaban el valor 0115, mientras que ahora valen 100,. En
cuanto al cuarto bit de mayor peso, el bit 12, en el caso del formato de
instruccién para bytes y palabras, éste podia tomar como valor un 0 o
un 1, mientras que en el formato de instruccién para medias palabras
siempre vale 0. Asi pues, el c6digo de operacion de este formato estd
formado por 4 bits con el valor 1000,. Los campos restantes, L, Offset5,
Rb y Rd son los mismos que los del formato de instruccién anterior.
Ademés, y siguiendo un razonamiento similar al del caso de carga o al-
macenamiento de palabras, el campo Offsetd permite codificar un dato
inmediato de 6 bits almacenando en él tinicamente los 5 bits de mayor
peso, ya que el bit de menor peso no es necesario almacenarlo puesto
que siempre vale 0 —para poder leer o escribir una media palabra, esta
debe estar almacenada en una direccién miiltiplo de 2, y un multiplo
de 2 en binario siempre tiene el bit de menor peso a 0—. Asi pues, los
desplazamientos de las instrucciones de carga y almacenamiento de me-
dias palabras estaran en el rango de [0, 62] bytes —o lo que es lo mismo,
de [0, 31] medias palabras—.

4.3.6. Formato de la instrucciéon de carga con
direccionamiento relativo al PC

La instrucciéon «ldr rd, [PC, #0ffset8]» carga en el registro rd la
palabra leida de la direccién de memoria especificada por la suma del
PC+2 (o PC+4, dependiendo del tamano de la instruccién) alineado a 4
mas el dato inmediato 0ffset8. ;Por qué PC+2, o PC+4, en lugar de PC?
Cuando el procesador va a calcular la direccién del operando fuente de
esta instruccién, que viene dado por la suma del contenido del registro PC
mas el desplazamiento 0ffset8, en la fase de ejecucién de la instruccion

El campo formado por
aquellos bits de la ins-
trucciéon que codifican
la operacién a realizar
—o el tipo de opera-
cién a realizar— recibe
el nombre de cddigo de
operacion.

https://es.wikipedia.org/wiki/C�digo_de_operaci�n

4.3. Modos de direccionamiento y formatos de instrucciéon de ARM

109

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 Rd Offset8

Rd Registro destino.

Offset8 Dato inmediato.

Figura 4.4: Formato de la instruccién de carga con direccionamiento
relativo al contador de programa: «ldr rd, [PC, #0ffset8]»

(véase el Apartado 1.2.2), el PC se habra actualizado en la fase previa de
incremento del contador de programa a PC+2 (o a PC+4, dependiendo
del tamano de la instruccién). Por eso la suma se realiza con respecto
al PC actualizado en lugar de con respecto al PC inicial. Ahora, ;por
qué PC + 2, o PC + 4, alineado a 47 Puesto que las instrucciones Thumb
ocupan una o media palabra, el contenido actualizado del PC podria no
ser miltiplo de 4, por lo que al hacer la suma con el desplazamiento
0ffset8, no se podria garantizar que el resultado fuera miltiplo de 4 y,
por tanto, que fuera una direccién de memoria valida para una palabra.
Asi pues, el contenido actualizado del PC se alinea a 4 —lo que se realiza
poniendo el bit 1 del PC a 0— para garantizar que dicho sumando sea
multiplo de 4 [ARMO95].

El formato de esta instruccién, «ldr rd, [PC, #0ffset8]», esta for-
mado por los campos que aparecen a continuacién y que se representan
en la Figura 4.4:

= OpCode: campo de 5 bits con el valor 01001,, que permitird a la
unidad de control saber que se trata de esta instruccion.

» Rd: se utiliza para codificar el registro destino.

= Offset8: se utiliza para codificar el desplazamiento que junto con
el contenido del registro PC proporciona la direccién de memoria
del operando fuente.

Es interesante observar que el registro que se utiliza como registro
base, el PC, estd implicito en la instruccion. Es decir, no se requiere un
campo adicional para codificar dicho registro, basta con saber que se
trata de esta instruccion para que el procesador utilice dicho registro.
Ademas, puesto que la instruccién «ldr rd, [PC, #0ffset8]» carga una
palabra cuya direccién de memoria tiene que estar alineada a 4, el campo
Offset8, de 8 bits, codifica en realidad un dato inmediato de 10 bits —se
guardan solo los 8 bits de mayor peso, ya que los dos de menor peso
seran siempre 0—, por lo que el rango del desplazamiento es en realidad
de [0,1020] bytes —o lo que es lo mismo, de [0, 255] palabras—.

4.3. Modos de direccionamiento y formatos de instrucciéon de ARM

110

> 4.9 Con ayuda del simulador, obtén el valor de los campos rd y
0ffset8 de la codificacion de la instrucciéon «ldr r3, [pc, #8441».

4.3.7. Formatos de las instrucciones de
carga/almacenamiento con direccionamiento
indirecto con registro de desplazamiento

Para codificar las instrucciones de carga/almacenamiento que utili-
zan el modo de direccionamiento indirecto con registro de desplazamien-
to se utilizan dos formatos de instruccion. El primero de estos formatos
de instruccion se muestra en la Figura 4.5 y se utiliza para codificar las
instrucciones:

= «ldr rd, [rb, rol»,

= «ldrb rd, [rb, rol»,
m «str rd, [rb, ro]l»y
m «strb rd, [rb, ro]».

El segundo de los formatos de instrucciéon se muestra en la Figura 4.6 y
codifica las restantes instrucciones de este tipo:

m «strh rd, [rb, ro]»,

= «ldrh rd, [rb, rol»,

» «ldrsh rd, [rb, rol» y
» «ldrsb rd, [rb, rol».

Ambos formatos de instruccién comparten los primeros 4 bits del
codigo de operacién, 0101,, y los campos Rd, Rb y Ro, utilizados para
codificar el registro destino/fuente, el registro base y el registro despla-
zamiento, respectivamente. Se diferencian en el quinto bit del c6édigo de
operacion —situado en el bit 9 de la instruccion—, que estd a 0 en el
primer caso y a 1 en el segundo, y en que los bits 11 y 10, que am-
bos utilizan para identificar la operacién en concreto, reciben nombres
diferentes.

> 4.10 Cuando el procesador lee una instruccion de uno de los formatos
descritos en las Figuras 4.5 y 4.6, jcémo distingue de cual de los
dos formatos de instruccién se trata?

4.4. Ejercicios

111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 1|L|BJ|O Ro Rb Rd

L Load/Store: 1, cargar; 0, almacenar.

B Byte/Word: 1, transferir byte; 0, palabra.
Ro Registro desplazamiento.

Rb Registro base.

Rd Registro fuente/destino.

Figura 4.5: Formato A de las instrucciones de carga/almacenamiento
con direccionamiento indirecto con registro de desplazamiento

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1|H|S|1 Ro Rb Rd

H y S Identifican la instruccién:

Instruccion

«strh rd, [rb, ro]»
«ldrsb rd, [rb, rol»
«ldrh rd, [rb, rol»
«ldrsh rd, [rb, rol»

oo | o
= O = O W

Ro Registro desplazamiento.
Rb Registro base.
Rd Registro fuente/destino.

Figura 4.6: Formato B de las instrucciones de carga/almacenamiento
con direccionamiento indirecto con registro de desplazamiento

4.4. Ejercicios

Ejercicios de nivel medio

» 4.11 Dado el siguiente programa (ya visto en el ejercicio 4.3), ensam-
blalo —no lo ejecutes— y resuelve los ejercicios que se muestran
a continuacion.

04_ldr_label.s &
.data
wordl: .word 0x10203040
word2: .word 0x11213141
word3: .word 0x12223242

.text
main: ldr ro, =wordl

BN S B

http://lorca.act.uji.es/libro/introARM2016/codigo/04_ldr_label.s

4.4. Ejercicios

112

8 ldr rl1, =word2
9 ldr r2, =word3
10 wfi

4.11.1 Escribe a continuaciéon en qué se han convertido las tres
instrucciones «ldry.

4.11.2 ;En qué direcciones de memoria se encuentran las variables
etiquetadas con «wordl», «word2» y «word3»?

4.11.3 ;Puedes localizar los ntimeros que has contestado en la pre-
gunta anterior en la memoria ROM? ;Dénde?

4.11.4 El contenido de la memoria ROM también se muestra en la
ventana de desensamblado del simulador, ;puedes localizar
ahi también dichos nimeros? ;dénde estan?

> 4.12 Utiliza el simulador para obtener la codificacién de la instruc-
ciéon «ldr r2, [r5, #116]1». ;Como se ha codificado, en binario, el
campo 0ffset5? ;Cudl es la representacion en binario con 7 bits
del niimero 1167

> 4.13 Intenta ensamblar la instruccién «ldrb r2, [r5, #116]1». ;Qué
mensaje de error proporciona el ensamblador? ;A qué es debido?

> 4.14 Intenta ensamblar la instruccién «ldr r2, [r5, #1171». ;Qué
mensaje de error proporciona el ensamblador? ;A qué es debido?

Ejercicios avanzados

> 4.15 Desarrolla un programa en ensamblador que defina el vector
de enteros de dos elementos V' = [vg,v;1] en la memoria de datos
y almacene la suma de sus elementos en la primera direccién de
memoria no ocupada después del vector.
Para probar el programa, inicializa el vector V' con [10, 20].

> 4.16 Con ayuda del simulador, obtén el valor de los campos rd y
0ffset8 de la codificacién de la instrucciéon «ldr r4, [pc, #492]».
;,Cudntos bits se necesitan para codificar en binario el nimero
4927 ; Se han guardado todos los bits del niimero 492 en el campo
0ffset8? ;Cudles no y por qué no hace falta hacerlo?

> 4.17 Codifica a mano la instruccion «ldrsh r5, [rl, r3]» Com-
prueba con ayuda del simulador que has realizado correctamente
la codificacion.

> 4.18 Con ayuda del simulador comprueba cudl es la diferencia entre la
codificacién de la instruccion «ldrsh r5, [rl, r3]», realizada en
el ejercicio anterior, y la de la instruccién «ldrsh r3, [rl, r2]».

4.4. Ejercicios

113

Ejercicios adicionales

> 4.19 Desarrolla un programa ensamblador que inicialice un vector
de enteros, V, definido como V = (10,20, 25,500, 3) y cargue los
elementos del vector en los registros ro al r4.

> 4.20 Amplia el anterior programa para que sume 5 a cada elemento
del vector V' y almacene el nuevo vector justo después del vector V.
Dicho de otra forma, el programa debera realizar la siguiente ope-
racion: W; = V; + 5,Vi € [0,4].

> 4.21 Desarrolla un programa ensamblador que dada la siguiente pa-
labra, 0x10203040, almacenada en una determinada direccién de
memoria, la reorganice en otra direccién de memoria invirtiendo
el orden de sus bytes.

> 4.22 Desarrolla un programa ensamblador que dada la siguiente pa-
labra, 0x10203040, almacenada en una determinada direccion de
memoria, la reorganice en la misma direccién intercambiando el
orden de sus medias palabras. (Nota: recuerda que las instruccio-
nes «ldrh» y «strh» cargan y almacenan, respectivamente, medias
palabras).

> 4.23 Desarrolla un programa ensamblador que inicialice cuatro bytes
con los valores 0x10, 0x20, 0x30, 0x40; reserve espacio para una
palabra a continuacion; y transfiera los cuatro bytes iniciales a la
palabra reservada.

CArPiTULO

Instrucciones de control de flujo

Indice
5.1. Saltos incondicionales y condicionales 115
5.2. Estructuras de control condicionales 119
5.3. Estructuras de control repetitivas 122
5.4. Modos de direccionamiento y formatos de 1nbt1uc—
cionde ARM 126
5.5. Ejercicios o oo o0 129

Los programas mostrados en los anteriores capitulos constaban de
una serie de instrucciones que se ejecutaban una tras otra, siguiendo
el orden en el que se habian escrito, hasta que el programa finalizaba.
Este tipo de ejecucién, en el que las instrucciones se ejecutan una tras
otra, siguiendo el orden en el que estan en memoria, recibe el nombre de
ejecucion secuencial. Este tipo de ejecucion presenta bastantes limi-
taciones. Un programa de ejecucion secuencial no puede, por ejemplo,
tomar diferentes acciones en funcion de los datos de entrada, o de los
resultados obtenidos, o de la interaccién con el usuario. Tampoco puede
repetir un nimero de veces ciertas operaciones, a no ser que el programa-
dor haya repetido varias veces las mismas operaciones en el programa.
Pero incluso en ese caso, el programa seria incapaz de variar el nimero
de veces que dichas instrucciones se ejecutarian.

Debido a la gran ventaja que supone el que un programa pueda tomar
diferentes acciones y que pueda repetir un conjunto de instrucciones un
nimero de veces variable, los lenguajes de programacién proporcionan
dichas funcionalidades por medio de estructuras de control condiciona-

114

Las estructuras de con-
trol permiten que un
programa pueda tomar
diferentes acciones y
que pueda repetir un
conjunto de instruccio-
nes un determinado nu-
mero de veces.

f LI
LS A
LY g “ 3

oS

=y

https://es.wikipedia.org/wiki/Estructuras_de_control

5.1. Saltos incondicionales y condicionales

115

les y repetitivas. Estas estructuras de control permiten modificar el flujo
secuencial de instrucciones. En particular, las estructuras de control con-
dicionales permiten la ejecucién de ciertas partes del codigo en funcién
de una serie de condiciones, mientras que las estructuras de control re-
petitivas permiten la repeticién de cierta parte del codigo hasta que se
cumpla una determinada condicién de parada.

Este capitulo se centra en las instrucciones y recursos proporciona-
dos por la arquitectura ARM para la implementacién de las estructuras
de control de flujo. El Apartado 5.1 muestra qué son y para qué se utili-
zan los saltos incondicionales y condicionales. El Apartado 5.2 describe
las estructuras de control condicionales if-then e if-then-else. El Apar-
tado 5.3 presenta las estructuras de control repetitivas while y for. Una
vez vistas las instrucciones que hacen posibles las estructuras de con-
trol, se ven con detalle los modos de direccionamiento utilizados para
codificar sus operandos y el formato de estas instrucciones. Por tltimo,
se proponen una serie de ejercicios.

El registro de estado (recordatorio)

Tal y como se vio en el capitulo anterior (§ 3.1), el registro de es-
tado mantiene informacién sobre el estado actual del procesador.
Parte de dicha informacién consiste en 4 bits que indican:

N: si el resultado ha sido negativo.

Z: si el resultado ha sido 0.

C: si se ha producido un acarreo.

V: sise ha producido un desbordamiento en operaciones con signo.

Cuando el procesador ejecuta una instruccién de transformacion,
como «add» o «cmp», actualiza los indicadores en funcién del re-
sultado obtenido. De esta forma, cuando posteriormente ejecute
una instruccién de control de flujo, podré realizar una accién u
otra dependiendo del valor de dichos indicadores.

5.1. Saltos incondicionales y condicionales

Las estructuras de control, tanto las condicionales como las repetiti-
vas, se implementan por medio de saltos incondicionales y condicionales.
Asi pues, antes de ver con detalle las estructuras de control, es necesario
conocer los tipos de salto soportados por ARM y las instrucciones que

5.1. Saltos incondicionales y condicionales

116

los implementan. En primer lugar se verdan los saltos incodicionales, y a
continuacién, los condicionales.

5.1.1. Saltos incondicionales

Los saltos incondicionales son aquéllos que se realizan siempre, es
decir, que no dependen de que se cumpla una determinada condicién
para realizar o no el salto. La instruccién de ARM que realiza un salto
incondicional es «b etiqueta», donde «etiqueta» indica la direccién de
memoria de la instruccién a la que se quiere saltar. Al tratarse de una
instruccién de salto incondicional, cada vez que se ejecuta la instruc-
cion «b etiquetay, el programa saltard a la instruccion etiquetada con
«etiquetay, independientemente de qué valores tengan los indicadores
del registro de estado.

> 5.1 El siguiente programa muestra un ejemplo de salto incondicional.

05_branch.s &

1 .text

2 [main: mov r@, #5

3 mov rl, #10

4 mov r2, #100
5 mov r3, #0

6 b salto

7 add r3, rl, ro
8 |salto: add r3, r3, r2
9 |stop: wfi

5.1.1 Carga y ejecuta el programa anterior. ;Qué valor contiene el
registro r3 al finalizar el programa?

5.1.2 Comenta la linea «b salto» (o bérrala) y vuelve a ejecu-
tar el programa. ;Qué valor contiene ahora el registro r3 al
finalizar el programa?

5.1.3 Volviendo al cédigo original, ;qué crees que pasaria si la
etiqueta «salto» estuviera antes de la instruccion «b salto»,
por ejemplo, en la linea «mov rl, #10»?

5.1.4 Crea un nuevo c6digo basado en el c6digo anterior, pero en el

que la linea etiquetada con «salto» sea la linea «mov rl,#10».

Ejecuta el programa paso a paso y comprueba si lo que ocu-
rre coincide con lo que habias deducido en el ejercicio ante-
rior.

«b etiqueta»

http://lorca.act.uji.es/libro/introARM2016/codigo/05_branch.s

5.1. Saltos incondicionales y condicionales

117

5.1.2. Saltos condicionales

Las instrucciones de salto condicional tienen la forma «bXX etiquetay,
donde «XX» se sustituye por un nemotécnico que indica la condicion que
se debe cumplir para realizar el salto y «etiqueta» indica la direccién
de memoria a la que se quiere saltar en el caso de que se cumpla dicha
condicién. Cuando el procesador ejecuta una instruccién de salto con-
dicional, comprueba los indicadores del registro de estado para decidir
si realizar el salto o no. Por ejemplo, cuando se ejecuta la instrucciéon
«beq etiqueta» (branch if equal), el procesador comprueba si el indica-
dor Z estd activo. Si estd activo, entonces salta a la instruccién etiquetada
con «etiquetay. Sino lo estd, el programa contintia con la siguiente ins-
truccién. De forma similar, cuando el procesador ejecuta «bne etiqueta»
(branch if not equal), saltard a la instruccion etiquetada con «etiqueta»
si el indicador Z no esta activo. Si esta activo, no saltara. En el Cua-
dro 5.1 se recogen las instrucciones de salto condicional disponibles en
ARM.

«beq etiqueta»

«bne etiqueta»

Cuadro 5.1: Instrucciones de salto condicional. Se muestra el nombre de la instruccion, el codigo
asociado a dicha variante —que se utilizara al codificar la instruccién— y la condicién de salto
—detrés de la cual y entre paréntesis se muestran los indicadores relacionados y el estado
en el que deben estar, activo en mayusculas e inactivo en mintsculas, para que se cumpla la

condicién—
Instruccién Cédigo Condicién de salto
«beq» (branch if equal) 0000 Igual (2)
«bney (branch if not equal) 0001 Distinto (z)
«besy (branch if carry set) 0010 Mayor o igual sin signo (C)
«beey (branch if carry clear) 0011 Menor sin signo (c)
«bmiy (branch if minus) 0100 Negativo (N)
«bpl» (branch if plus) 0101 Positivo o cero (n)
«bvs» (branch if overflow set) 0110 Desbordamiento (V)
«bvey (branch if overflow clear) 0111 No hay desbordamiento (v)
«bhiy (branch if higher) 1000 Mayor sin signo (Cz)
«blsy» (branch if lower or same) 1001 Menor o igual sin signo (c o 2)
«bgey» (branch if greater or equal) 1010 Mayor o igual (NV o nv)
«blty (branch if less than) 1011 Menor que (Nv o nV)
«bgty» (branch if greater than) 1100 Mayor que (z y (NV o nv))
«ble» (branch if less than or equal) 1101 Menor o igual (Nv o nV o Z)

> 5.2 El siguiente ejemplo muestra un programa en el que se utiliza la
instruccién «beq» para saltar en funcién de si los valores contenidos

5.1. Saltos incondicionales y condicionales

118

en los
no.

main:

© 0 N O GoR W N

salto:
stop:

—
[}

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

registros comparados en la instruccion previa eran iguales o

05_beq.s &=
.text
mov r@, #5
mov rl, #10
mov r2, #5
mov r3, #0
cmp r@, r2
beq salto
add r3, ro, rl
add r3, r3, rl
wfi

Carga y ejecuta el programa anterior. ; Qué valor contiene el
registro r3 cuando finaliza el programa?

LJEn qué estado estd el indicador Z tras la ejecucién de la
instruccién «cmp r@, r2»? Para contestar a esta pregunta
deberas recargar la simulacién y detener la ejecucién justo
después de ejecutar dicha instruccion.

Cambia la linea «emp r@, r2» por «ecmp r@, rl» y vuelve a
ejecutar el programa. ;Qué valor contiene ahora el registro
r3 cuando finaliza el programa?

JEn qué estado estd el indicador Z tras la ejecucién de la
instruccién «cmp r@, rin?

. Por qué se produce el salto en el primer caso, «cmp r@, r2y,
y no en el segundo, «cmp r@, ril»?

> 5.3 Severd ahora el funcionamiento de la instruccién «bne etiqueta».
Para ello, el punto de partida serd el programa anterior (sin la
modificacién propuesta en el ejercicio previo), y en el que se deberd
sustituir la instruccién «beq salto» por «bne salto».

5.3.1

5.3.2

5.3.3

5.3.4

Carga y ejecuta el programa. ;Qué valor contiene el registro
r3 cuando finaliza el programa?

JEn qué estado estd el indicador Z tras la ejecucién de la
instruccién «cmp r@, r2»?

Cambia la linea «emp r@, r2» por «ecmp r0, rly» y vuelve a
ejecutar el programa. ;Qué valor contiene ahora el registro
r3 cuando finaliza el programa?

JEn qué estado estd el indicador Z tras la ejecucién de la
instruccién «emp r@, ril»?

http://lorca.act.uji.es/libro/introARM2016/codigo/05_beq.s

[NG NV VN

© 0 N O U ke W NN =

= = e
N o= O

5.2. Estructuras de control condicionales

119

5.3.5 ;(Por qué no se produce el salto en el primer caso, cuan-
do se habia utilizado «cmp r@, r2», y si en el segundo, con
«emp rO, rix»?

5.2. Estructuras de control condicionales

Los saltos incondicionales y condicionales vistos en el apartado an-
terior se utilizan para construir las estructuras de control condicionales
y repetitivas. En este apartado se verd cémo utilizar dichos saltos para
la construccién de las siguientes estructuras de control condicionales:
if-then e if-then-else.

5.2.1. Estructura condicional if-then

La estructura condicional if-then estd presente en todos los lengua-
jes de programacioén y se usa para realizar o no un conjunto de acciones
dependiendo de una condicién. A continuacién se muestra un programa
escrito en Python3 que utiliza la estructura if-then. El programa com-
prueba si el valor de la variable X es igual al valor de Y y en caso de que
asi sea, suma los dos valores, almacenando el resultado en Z. Si no son
iguales, Z permanecerd inalterado.

X=1
Y=1
Z=20
if (X ==Y):

Z=X+Y

Una posible implementacién del programa anterior en ensamblador
Thumb de ARM, seria la siguiente:

05_if.s =
.data
X: .word 1
Y: .word 1
Z: .word 0O
.text

main: ldr ro, =X
ldr r0, [r0] @ ro <- [X]
ldr r1, =Y
ldr rl, [rl1] @ rl <- [Y]

cmp r@, rl

if-then es un tipo de
estructura condicional
que ejecuta o no un blo-
que de codigo en fun-
cién de una determina-
da condicion.

https://es.wikipedia.org/wiki/Sentencia_condicional
http://lorca.act.uji.es/libro/introARM2016/codigo/05_if.s

13
14
15
16
17
18

5.2. Estructuras de control condicionales

120

bne finsi

add r2, ro, rl1 @-

ldr r3, =Z @ [Z] <- [X] + [Y]
str r2, [r3] @-

finsi: wfi

> 5.4 Carga el programa anterior, ejectitalo y realiza los siguientes ejer-
cicios:

5.4.1 ;Qué valor contiene la direccion de memoria Z cuando fina-
liza el programa?

5.4.2 Modifica el c6digo para que el valor de Y sea distinto del de X
y vuelve a ejecutar el programa. ;Qué valor hay ahora en la
direcciéon de memoria Z cuando finaliza el programa?

Como se puede observar en el programa anterior, la idea fundamental
para implementar la instruccién «if x==y:» ha consistido en utilizar
una instruccion de salto condicional que salte cuando no se cumpla dicha
condicion, esto es, «bney. Es decir, se ha puesto como condicién de salto,
la condicién contraria a la expresada en el «if». Al hacerlo asi, si los
dos valores comparados son iguales, la condiciéon de salto no se dara y el
programa continuard, ejecutando el bloque de instrucciones que deben
ejecutarse solo si «x==y» (una suma en este ejemplo). En caso contrario,
se producird el salto y dicho bloque no se ejecutara.

Ademés de implementar la estructura condicional ¢f-then, el progra-
ma anterior constituye el primer ejemplo en el que se han combinado las
instrucciones de transformacion, de transferencia y de control de flujo,
por lo que conviene detenerse un poco en su estructura, ya que es la que
seguiran la mayor parte de programas a partir de ahora. Como se puede
ver, en la zona de datos se han inicializado tres variables. Al comienzo
del programa, dos de dichas variables, X e Y, se han cargado en sendos
registros. Una vez hecho lo anterior, el resto del programa opera exclu-
sivamente con registros, salvo cuando es necesario actualizar el valor de
la variable «Z», en cuyo caso, se almacena la suma de X + Y, que estd
en el registro r2, en la direcciéon de memoria etiquetada con «Z». La
Figura 5.1 muestra el esquema general que se seguird a partir de ahora.

5.2.2. Estructura condicional if-then-else

Otra estructura condicional que suele utilizarse habitualmente es if-
then-else. Se trata de una extension de la estructura if-then vista en el

00 N O U ks W N

Tl W N

5.2. Estructuras de control condicionales

121

Zona de datos

s Inicializacién de variables de entrada.

= Reserva de espacio para resultados.

Zona de cédigo
= Carga de variables de entrada en registros.

= Operaciones.

» Almacenamiento de los resultados en memoria.

Figura 5.1: Esquema general de un programa en ensamblador de ARM

apartado anterior, que ademas de permitir indicar qué se quiere hacer
cuando se cumpla una determinada condicién, permite especificar qué
acciones se deben ejecutar en el caso de que no se verifique la condicién
indicada. Asi por ejemplo, en el siguiente programa en Python3, si se
cumple la condicién —;son iguales X e Y?— se realiza una accion, la
misma que en el ejemplo anterior, sumar X e Y, y si no son iguales, se
realiza otra accion diferente, sumar el niimero 5 a X.

X=1
Y=1
Z=0
if (X == Y):
Z=X+Y
else:
Z=X+5

Cuando se escriba un programa equivalente en cédigo maquina, las
instrucciones de salto que se utilicen determinaran, en funcién de la
condiciéon evaluada y del tipo de salto, qué instrucciones del programa
se ejecutan y cudles no. ;Qué instrucciones de salto utilizarias? ;Dénde
las pondrias? Una vez que hayas esbozado una soluciéon, compara tu
respuesta con la siguiente implementacion:

05_if_else.s &

.data
X: .word 1
Y: .word 1
Z: .word O

http://lorca.act.uji.es/libro/introARM2016/codigo/05_if_else.s

© 0w N O

10
11
12
13
14
15
16
17
18
19
20
21
22

5.3. Estructuras de control repetitivas

122

.text
main: ldr ro, =
ldr ro, [rO] @ ro <- [X]
ldr r1, =
ldr r1, [rl] @ rl <- [Y]
cmp r@, rl
bne else
add r2, ro, rl @ r2 <- [X] + [Y]
b finsi
else: add r2, ro, #5 @ r2 <- [X] +5

finsi: ldr r3, =Z
str r2, [r3] @ [Z] <- r2

stop: wfi

> 5.5 Carga el programa anterior, ejectitalo y realiza los siguientes ejer-
cicios:

5.5.1 ;Qué valor hay en la direcciéon de memoria Z cuando finaliza
el programa?

5.5.2 Cambia el valor de Y para que sea distinto de X y vuelve a
ejecutar el programa. ;Qué valor hay ahora en la direccién
de memoria Z al finalizar el programa?

5.5.3 Supodn que el programa anterior en Python3, en lugar de la
linea «if X == Y:», tuviera la linea «if X > Y:». Cambia el
programa en ensamblador para que se tenga en cuenta dicho
cambio. ;Qué modificaciones has realizado en el programa
en ensamblador?

5.3. Estructuras de control repetitivas

En el anterior apartado se ha visto como se pueden utilizar las ins-
trucciones de salto para implementar las estructuras condicionales if-
then e if-then-else. En este apartado se veran las dos estructuras de
control repetitivas, también llamadas iterativas, que se utilizan con mas
frecuencia, while y for, y cémo se implementan al nivel de la maquina.

0 N O Ut W N

=W N =

© 0w N O w»

11
12
13
14
15
16
17
18
19

5.3. Estructuras de control repetitivas

123

5.3.1. Estructura de control repetitiva while

La estructura de control repetitiva while permite ejecutar repetida-
mente un bloque de cdédigo mientras se siga cumpliendo una determinada
condicién. La estructura while funciona igual que una estructura if-then,
en el sentido de que si se cumple la condicion evaluada, se ejecuta el coédi-
go asociado a dicha condicién. Pero a diferencia de la estructura if-then,
una vez se ha ejecutado la tltima instruccion del cédigo asociado a la
condicidn, el flujo del programa vuelve a la evaluacién de la condicion y
todo el proceso se vuelve a repetir mientras se cumpla la condicion. Asi
por ejemplo, el siguiente programa en Python3, realizaré las operaciones
X =X+2-Fy FE =FE+1 mientras se cumpla que X < LIM. Por
lo tanto, y dados los valores iniciales de X, E'y LIM, la variable X ird
tomando los siguientes valores con cada iteracién del bucle while: 3, 7,
13, 21, 31, 43, 57, 73, 91 y 111.

X=1
E=1
LIM = 100

while (X<LIM):
X=X+2=xE
E=E+1
print(X)

Una posible implementacién del programa anterior en ensamblador
Thumb de ARM seria la siguiente:

05_while.s =
.data
X: .word 1
E: .word 1
LIM: .word 100

.text

main: ldr ro, =
ldr ro, [r0] @ ro <- [X]
ldr r1, =
ldr r1, [rl] @ rl <- [E]
ldr r2, =LIM
ldr r2, [r2] @ r2 <- [LIM]

bucle: cmp r@, r2

bge finbuc
1sl r3, r1, #1 @ r3 <- 2 x [E]
add r0, ro, r3 @ r0 <- [X] + 2 x [E]
add rl, rl, #1 @rl <- [E] +1

ldr r4, =X

http://lorca.act.uji.es/libro/introARM2016/codigo/05_while.s

20
21
22
23
24
25

5.3. Estructuras de control repetitivas

124

str r0, [r4] @ [X] <- ro

ldr r4, =E

str rl, [r4] @ [E] <-rl
b bucle

finbuc: wfi

> 5.6 Carga el programa anterior, ejectitalo y realiza los siguientes ejer-
cicios:

5.6.1 ;Qué hacen las instrucciones «cmp r@, r2», «bge finbuc» y
«b bucle»?

5.6.2 jPor qué se ha usado la instruccion de salto condicional
«bge» y no «blt»? ;Por qué «bge» y no «bgt»?

5.6.3 ;Qué indicadores del registro de estado se comprueban cuan-
do se ejecuta la instruccién «bge»? ; Como deben estar dichos
indicadores, activados o desactivados, para que se ejecute el
interior del bucle?

5.6.4 ;Qué instruccién se ha utilizado para calcular 2 - E7 ;Qué
operacion realiza dicha instruccién?

5.3.2. Estructura de control repetitiva for

Con frecuencia se suele utilizar como condicién para finalizar un bu-
cle, el nimero de veces que se ha iterado sobre él. En estos casos, se
utiliza una variable para llevar la cuenta del nimero de iteraciones rea-
lizadas, que recibe el nombre de contador. Asi pues, para implementar
un bucle con dichas caracteristicas, bastaria con inicializar un contador
—p.e. a 0— y utilizar la estructura while vista en el apartado anterior,
de tal forma que mientras dicho contador no alcance un determinado
valor, se llevaria a cabo una iteracién de las acciones que forman parte
del bucle y se incrementaria en 1 el valor almacenado en el contador.
Como este caso se da con bastante frecuencia, los lenguajes de progra-
macién de alto nivel suelen proporcionar una forma de llevarla a cabo
directamente: el bucle for. El siguiente programa muestra un ejemplo
de uso de la estructura de control repetitiva for en Python3, en el que
se suman todos los valores de un vector V' y almacena el resultado en
la variable suma. Puesto que en dicho programa se sabe el nimero de
iteraciones que debe realizar el bucle, que es igual al ntimero de ele-
mentos del vector, la estructura ideal para resolver dicho problema es el
bucle for. Ejercicio para el lector: jcémo se resolveria el mismo problema
utilizando la estructura while?

Un bucle for o para es
una estructura de con-
trol que permite que un
determinado codigo se
ejecute repetidas veces.
Se distingue de otros ti-
pos de bucles, como el
while, por el uso expli-
cito de un contador.

https://en.wikipedia.org/wiki/For_loop

DUt W N =

© 0 N O U W NN =

NN NN NN e e e e e
Rk W N R O © 0N U W NN = O

5.3. Estructuras de control repetitivas

125

V=12, 4, 6, 8, 10]

n=>5

suma = 0

for i in range(n): # i = [0..N-1]

suma = suma + V[i]

Conviene hacer notar que un programa en Python3 no necesitaria la
variable n, ya que en Python3d un vector es una estructura de datos de
la que es posible obtener su longitud utilizando la funciéon «len()». Asi
que si se ha utilizado la variable n, ha sido simplemente para acercar
el problema al caso del ensamblador, en el que si que se va a tener
que recurrir a dicha variable. Una posible implementacion del programa
anterior en ensamblador Thumb de ARM seria la siguiente:

05_for.s =
.data
V: .word 2, 4, 6, 8, 10
n: .word 5
suma: .word O
.text
main: ldr ro, =V @ r@ <- direccién de V
ldr rl, =n

idr rl, [rl1] @ rl <- [n]
ldr r2, =suma

Udr r2, [r2] @ r2 <- [suma]
mov r3, #0 @r3<-20

bucle: cmp r3, rl

beq finbuc
ldr r4, [r0]
add r2, r2, r4 @ r2 <- r2 + V[i]

add ro, ro, #4
add r3, r3, #1
b bucle

finbuc: ldr r@, =suma
str r2, [rO] @ [suma] <- r2

stop: wfi

En el coédigo anterior se utiliza el registro r3 para almacenar el con-
tador del bucle, que se inicializa a 0, y el registro rl para almacenar la
longitud del vector. Al principio del bucle se comprueba si el contador es
igual a la longitud del vector ([r3] == [r1]). Si son iguales, se salta fuera
del bucle. Si no, se realizan las operaciones indicadas en el interior del

http://lorca.act.uji.es/libro/introARM2016/codigo/05_for.s

5.4. Modos de direccionamiento y formatos de instrucciéon de ARM

126

bucle, entre ellas, la de incrementar en uno el contador ([r3] < [r3]+1)
y se vuelve de nuevo al principio del bucle, donde se vuelve a comprobar
si el contador es igual a la longitud del vector. ..

> 5.7 Carga el programa anterior, ejectitalo y realiza los siguientes ejer-
cicios:

5.7.1 ;Para qué se utilizan las siguientes instrucciones: «ecmp r3, rily,

«beq finbuc», «add r3, r3, #l» y «b bucle»?

5.7.2 ;Qué indicador del registro de estado se estd comprobando
cuando se ejecuta la instruccién «beq finbuc»?

5.7.3 ;Qué contiene el registro r@? ;Para qué sirve la instruccién
«ldr rd, [rO]»?

5.7.4 ;Para qué sirve la instrucciéon «add r@, r@, #4»?

5.7.5 ;Qué valor contiene la direccién de memoria «sumay» cuando
finaliza la ejecucion del programa?

5.4. Modos de direccionamiento y formatos de
instruccion de ARM

En este apartado se describen los modos de direccionamiento em-
pleados en las instrucciones de salto y sus formatos de instruccién.

5.4.1. Direccionamiento de las instrucciones de salto

Uno de los operandos de las instrucciones de salto (§ 5.1) —tanto in-
condicionales, «b etiqueta», como condicionales, «bXX etiqueta»— es
justamente la direcciéon de salto, que se indica por medio de una etique-
ta, que a su vez referencia la direccion de memoria a la que se quiere
saltar. ;Cdémo se codifica dicha direccién de memoria en una instruc-
cién de salto? Puesto que las direcciones de memoria en ARM ocupan
32 bits, si se quisieran codificar los 32 bits del salto en la instruccién,
serfa necesario recurrir a instrucciones que ocuparan méas de 32 bits (al
menos para las instrucciones de salto, ya que no todas las instrucciones
tienen por qué ser del mismo tamano). Pero ademads, en el caso de uti-
lizar esta aproximacion, la de codificar la direccién completa del salto
como un valor absoluto, se forzaria a que el cédigo se tuviera que eje-
cutar siempre en las mismas direcciones de memoria. Esta limitacion se
podria evitar durante la fase de carga del programa. Bastaria con que el

5.4. Modos de direccionamiento y formatos de instrucciéon de ARM

127

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 O SOffset11

SOffset1l Dato inmediato con signo.

Figura 5.2: Formato de la instruccion de salto incondicional
«b etiqueta»

programa cargador, cuando cargue un codigo para su ejecucion, sustitu-
ya las direcciones de salto absolutas por nuevas direcciones que tengan
en cuenta la direccién de memoria a partir de la cual se esté cargando el
c6digo [Shil3]. En cualquier caso, esto implicaria que el programa carga-
dor deberia: 1) reconocer los saltos absolutos en el c6digo, 11) calcular la
nueva direccién de salto y 111) sustituir las direcciones de salto originales
por las nuevas.

Por lo tanto, para que las instrucciones de salto sean pequenas y el
codigo sea directamente reubicable en su mayor parte, en lugar de saltos
absolutos se suele recurrir a utilizar saltos relativos. Bien, pero, ;rela-
tivos a qué? Para responder adecuadamente a dicha pregunta conviene
darse cuenta de que la mayor parte de las veces, los saltos se realizan a
una posicién cercana a aquella instruccién desde la que se salta (p.e., en
estructuras if-then-else, en bucles while y for...). Por tanto, el conteni-
do del registro PC, que tiene la direcciéon de la siguiente instruccién a la
actual, se convierte en el punto de referencia idéneo. Asi pues, los saltos
relativos se codifican como saltos relativos al registro PC. La arquitectu-
ra Thumb de ARM no es una excepcién. De hecho, en dicha arquitectura
tanto los saltos incondicionales como los condicionales utilizan el modo
de direccionamiento relativo al PC para codificar la direccién de salto.

Por otro lado, el operando destino de las instrucciones de salto es
siempre el registro PC, por lo que el modo de direccionamiento utilizado
para indicar el operando destino es el implicito.

5.4.2. Formato de la instruccion de salto incondicional

El formato de instruccion utilizado para codificar la instruccién de
salto incondicional, «b etiqueta», (véase la Figura 5.2) estd formado
por dos campos. El primero de ellos corresponde al cédigo de operaciéon
(11100,). El segundo campo, SOffsetll, que consta de 11 bits, se des-
tina a codificar el desplazamiento. Para poder aprovechar mejor dicho
espacio, se utiliza la misma técnica ya comentada anteriormente. Puesto
que las instrucciones Thumb ocupan 16 o 32 bits, el ntimero de bytes del
desplazamiento va a ser siempre un nimero par y, por tanto, el altimo
bit del desplazamiento va a ser siempre 0. Como se sabe de antemano el
valor de dicho bit, no es necesario guardarlo en el campo SOffsetll, lo

© 0 N O Utk W NN =

==
= o

5.4. Modos de direccionamiento y formatos de instrucciéon de ARM

128

que permite guardar los bits 1 al 11 del desplazamiento —en lugar de
los bits del 0 al 10—. Pudiendo codificar, por tanto, el desplazamiento
con 12 bits —en lugar de con 11—, lo que proporciona un rango de salto
de [—2048,2046] bytes' con respecto al PC.

Hasta ahora sabemos que la direccién de memoria a la que se quie-
re saltar se codifica como un desplazamiento de 12 bits con respecto
al contenido del registro PC. Sin embargo, no hemos dicho mucho del
contenido del registro PC. Tedricamente, el contenido del registro PC se
actualiza al valor PC+2 al comienzo de la ejecucién de la instrucciéon
«b etiqueta», puesto que la instruccién «b etiqueta» ocupa 2 bytes.
Por tanto, el valor del desplazamiento deberia ser tal que al sumarse a
PC+2 diera la direccion de salto. En la préactica, cuando el procesador
va a ejecutar el salto, el contenido del PC se ha actualizado al valor del
PC+4. Esto es debido a que se utiliza una técnica conocida como precar-
ga de instrucciones. Por tanto, en realidad el desplazamiento debe ser
tal que al sumarse al PC+4 proporcione la direccién de memoria a la que
se quiere saltar. Para ilustrar lo anterior, fijate que el siguiente c6digo
estd formado por varias instrucciones que saltan al mismo sitio:

05_mod_dir_b.s =

.text
main: b salto

b salto

b salto

b salto
salto: mov r@, ro

mov rl, rl

b salto

b salto
stop: wfi

» 5.8 Copia el programa anterior y ensamblalo, pero no lo ejecutes (el
programa no tiene ningin propdsito como tal y si se ejecutara
entrarfa en un bucle sin fin)

5.8.1 ;Cual es la direccién de memoria de la instruccion etiquetada
con «salto»?

5.8.2 Segun la explicacién anterior, cuando se va a realizar el sal-
to desde la primera instruccion, ;jqué valor tendra el regis-

1Si el bit 0 no se considerara como un bit implicito a la instruccién, el rango
del desplazamiento corresponderia al rango del complemento a 2 con 11 bits para
ndmeros pares, es decir, [—1 024, 1 022] bytes con respecto al PC.

http://lorca.act.uji.es/libro/introARM2016/codigo/05_mod_dir_b.s

5.5. Ejercicios

129

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Cond SOffset8

Cond Condicién.

SOffset8 Dato inmediato con signo.

Figura 5.3: Formato de las instrucciones de salto condicional

tro PC?, ;qué nimero se ha puesto como desplazamiento?,
jcudnto suman?

5.8.3 ;Cuéanto vale el campo S0ffsetll de la primera instruccién?
. Qué relacién hay entre el desplazamiento y el valor codifi-
cado de dicho desplazamiento?

5.8.4 Observa con detenimiento las demas instrucciones, ;jqué nui-
meros se han puesto como desplazamiento en cada una de
ellas? Comprueba que al sumar dicho desplazamiento al PC+4
se consigue la direccién de la instruccion a la que se quiere
saltar.

5.4.3. Formato de las instrucciones de salto condicional

Las instrucciones de salto condicional se codifican de forma similar
a como se codifica la de salto incondicional (véase la Figura 5.3). A
diferencia del formato de la de salto incondicional, el campo utilizado
para codificar el salto, SOffset8, es tan solo de 8 bits —frente a los 11
en la de salto incondicional—. Esto es debido a que este formato de
instruccién debe proporcionar un campo adicional, Cond, para codificar
la condicién del salto (véase el Cuadro 5.1), por lo quedan menos bits
disponibles para codificar el resto de la instruccion. Puesto que el campo
SO0ffset8 solo dispone de 8 bits, el desplazamiento que se puede codificar
en dicho campo correspondera al de un niimero par en complemento a 2
con 9 bits —ganando un bit por el mismo razonamiento que el indicado
para las instrucciones de salto incondicional—. Por tanto, el rango del
desplazamiento de los saltos condicionales estd limitado a [—512,510]
con respecto al PC+4.

5.5. Ejercicios

Ejercicios de nivel medio

> 5.9 Implementa un programa que dados dos ntmeros almacenados
en dos posiciones de memoria A y B, almacene el valor absoluto

5.5. Ejercicios

130

de la resta de ambos en la direccién de memoria RES. Es decir, si
A es mayor que B debera realizar la operacion A — B y almacenar
el resultado en RES, y si B es mayor que A, entonces debera
almacenar B — A.

> 5.10 Implementa un programa que dado un vector, calcule el nimero

de sus elementos que son menores a un nimero dado. Por ejemplo,
si el vector es [2,4,6,3,10,12,2] y el nimero es 5, el resultado
esperado serd 4, puesto que hay 4 elementos del vector menores
a b.

Ejercicios avanzados

> 5.11 Implementa un programa que dado un vector, sume todos los

elementos del mismo mayores a un valor dado. Por ejemplo, si el
vector es [2,4,6,3,10,1,4] y el valor 5, el resultado esperado serd
6+ 10=16

> 5.12 Implementa un programa que dadas las notas de 2 examenes

parciales almacenadas en memoria (con notas entre 0 y 10), calcule
la nota final (haciendo la media de las dos notas —recuerda que
puedes utilizar la instruccién «lsr» para dividir entre dos—) y
almacene en memoria la cadena de caracteres APROBADO si la
nota final es mayor o igual a 5 y SUSPENSO si la nota final es
inferior a 5.

Ejercicios adicionales

> 5.13 El siguiente programa muestra un ejemplo en el que se modifi-

0 N O U W N

can los indicadores del registro de estado comparando el contenido
de distintos registros. Copia y ensambla el programa. A continua-
cién, ejecuta el programa paso a paso y responde a las siguientes
preguntas.

05_cambia_indicadores.s &

.text

main: mov rl, #10
mov r2, #5
mov r3, #10
cmp rl, r2
cmp rl, r3
cmp r2, r3

stop: wfi

http://lorca.act.uji.es/libro/introARM2016/codigo/05_cambia_indicadores.s

5.5. Ejercicios

131

5.13.1 Carga y ejecuta el programa anterior. ;Se activa el indica-
dor N tras la ejecucion de la instrucciéon «emp rl, r2»? jy
el indicador z?

5.13.2 ;Se activa el indicador N tras la ejecucién de la instruccién
«emp rl, r3»? jy el indicador z?

5.13.3 ;Se activa el indicador N tras la ejecucién de la instruccién
«emp r2, r3»? ;v el indicador z?

> 5.14 Modifica el programa del Ejercicio 5.12 para que almacene en
memoria la cadena de caracteres SUSPENSO si la nota final es
menor a 5, APROBADO si la nota final es mayor o igual a 5 pero
menor a 7, NOTABLE si la nota final es mayor o igual a 7 pero
menor a 9y SOBRESALIENTE si la nota final es igual o superior
a 9.

> 5.15 Modifica el programa del ejercicio anterior para que si alguna
de las notas de los exdmenes parciales es inferior a 5, entonces se
almacene NOSUPERA independientemente del valor del resto de
examenes parciales.

> 5.16 Implementa un programa que dado un vector, sume todos los
elementos pares. Por ejemplo, si el vector es [2,7,6, 3, 10], el resul-
tado esperado sera 2 + 6 + 10 = 18.

» 5.17 Implementa un programa que calcule los N primeros niimeros de
la sucesion de Fibonacci. La sucesiéon comienza con los niimeros 1y
1y a partir de estos, cada término es la suma de los dos anteriores.
Es decir que el tercer elemento de la sucesion es 1+1 = 2, el cuarto
142 =3, el quinto 2+ 3 = 5 y asi sucesivamente. Por ejemplo, los
N = 10 primeros son [1,1,2,3,5, 8,13, 21, 34, 55]. Para ello deberas
usar una estructura de repeticion adecuada y almacenar los valores
obtenidos en memoria.

> 5.18 Modifica el programa anterior para que calcule elementos de la
sucesién de Fibonacci hasta que el dltimo elemento calculado sea
mayor a un valor concreto.

CArPiTULO

Introduccion a la gestion de

subrutinas
Indice
6.1. Llamada y retorno de una subrutina 135
6.2. Paso de parametros 138
6.3. Ejercicios Lo 146

En los capitulos anteriores se ha visto una gran parte del juego de ins-
trucciones de la arquitectura ARM: las instrucciones de transformacién
—que permiten realizar operaciones aritméticas, logicas y de desplaza-
miento—, las de carga y almacenamiento —necesarias para cargar las
variables y almacenar los resultados— y las de control de flujo —que
permiten condicionar la ejecuciéon de determinadas instrucciones o el
nimero de veces que se ejecuta un bloque de instrucciones—. De hecho,
los lenguajes de programacién pueden realizar transformaciones sobre
datos, trabajar con variables en memoria e implementar las estructuras
de programacién condicionales y repetitivas, gracias a que el procesador
es capaz de ejecutar las instrucciones vistas hasta ahora. Este capitulo
introduce otra herramienta fundamental para la realizacién de progra-
mas en cualquier lenguaje: la subrutina. En este capitulo se explicard
qué son las subrutinas, cémo se gestionan a bajo nivel y el soporte que
proporciona la arquitectura ARM para su gestion.

Una subrutina es un fragmento de cédigo independiente, que nor-
malmente realiza una tarea auxiliar completa, a la que se puede llamar
mediante una instruccién especifica, desde cualquier parte de un progra-

132

Una subrutina es una
parte del programa a
la que se puede llamar
para resolver una tarea
especifica.

https://es.wikipedia.org/wiki/Subrutina

[NG IV VN

Introduccién a la gestién de subrutinas

133

ma y que, una vez ha completado su cometido, devuelve el control a la
instruccién siguiente a la que habia efectuado la llamada. Es habitual
que cuando se llame a una subrutina se le pasen uno o varios datos,
llamados pardmetros, para que opere con ellos, para que realice unas
acciones u otras, etc. Asimismo, también es frecuente que la subrutina,
al terminar, devuelva uno o varios resultados a la parte del programa
que la llamé. Por otro lado, conviene tener en cuenta que dependiendo
del lenguaje de programacién y de sus particularidades, una subrutina
puede recibir cualquiera de los siguientes nombres: rutina, procedimien-
to, funcion, método o subprograma. De hecho, es probable que ya hayas
oido alguno de dichos nombres. Por ejemplo, en Python3 y en Java, en
lugar de hablar de subrutinas se habla de funciones y métodos. Aunque
en realidad si que hay diferencias de significado entre algunos de los tér-
minos anteriores, cuando en este texto utilicemos el término subrutina,
nos estaremos refiriendo indistintamente a cualquiera de ellos, ya que en
ensamblador no se hace dicha distincién. Para ver con més detalle en qué
consiste una subrutina utilizaremos el siguiente programa en Python3,
en el que se puede ver un ejemplo de subrutina, llamada «multadd».

def multadd(x, y, a):
res = xxy + a
return res

rl
r2

multadd(5, 3, 2)
multadd(2, 4, 1)

La sintaxis de Python3 para declarar el inicio de una subrutina es
«def nombre(paraml, param2...):». En dicha linea se da nombre a la
subrutina y se especifica el nombre de cada uno de los parametros que se
le van a pasar. En el ejemplo anterior, la subrutina se llama «multadd» y
espera recibir tres parametros, nombrados como «x», «y» y «a» —estos
nombres se utilizaran en el cdédigo de la subrutina para hacer referencia
a los pardmetros recibidos—. El cédigo indentado que aparece a conti-
nuacién es el cédigo de la subrutina. En este ejemplo, consiste en dos
instrucciones. La primera, «res = xxy +a», realiza una operacién con
los parametros de entrada y la segunda, «return resy, sigue la sintaxis
de Python3 para la devolucién de resultados. Asi pues, las acciones que
lleva a cabo dicha subrutina, son: 1) realiza la operacion res < x-y+a
con los pardmetros x, y y a que recibe al ser llamada y, una vez com-
pletada la operacién, 11) devuelve el control al punto siguiente desde el
que fue llamada, que puede acceder al resultado proporcionado.

Como se puede observar, la subrutina «multadd» es llamada dos ve-
ces desde el programa principal. En la primera de ellas, los parametros
x, ¥y v a toman los valores 5, 3 y 2, respectivamente. Mientras que la
segunda vez, toman los valores 2, 4 y 1. Cuando se ejecuta la instruc-

En este libro se utili-
za el término subruti-
na para referirse de for-
ma indistinta a rutinas,
procedimientos, funcio-
nes, métodos o subpro-
gramas.

Introduccién a la gestién de subrutinas

134

cién «rl1 = multadd(5, 3, 2)», el control se transfiere a la subrutina
«multadd», que calcula 5 -3 + 2 y devuelve el control al programa prin-
cipal, que, a su vez, almacena el resultado, 17, en la variable rl. A
continuacién, comienza la ejecucién de la siguiente instruccién del pro-
grama, «r2 = multadd(2, 4, 1)», y el control se transfiere de nuevo a
la subrutina «multadd», que ahora calcula 2 -4 + 1 y devuelve de nue-
vo el control al programa principal, pero en esta ocasién al punto del
programa en el que se almacena el resultado, 9, en la variable r2.

Como se ha podido comprobar, «multadd» responde efectivamente a
la definicién dada de subrutina: es un fragmento de c6digo independien-
te, que realiza una tarea auxiliar completa, que se puede llamar desde
cualquier parte de un programa y que, una vez ha completado su come-
tido, devuelve el control al punto del programa inmediatamente después
de donde se habia efectuado la llamada. Ademads, se le pasan varios pa-
rametros para que opere con ellos, y, al terminar, devuelve un resultado
al programa que la llamé.

i Por qué utilizar subrutinas? El uso de subrutinas presenta varias
ventajas. La primera de ellas es que permite dividir un problema largo y
complejo en subproblemas més sencillos. La ventaja de esta divisién ra-
dica en la mayor facilidad con la que se puede escribir, depurar y probar
cada uno de los subproblemas por separado. Esto es, se puede desarro-
llar y probar una subrutina independientemente del resto del programa
y posteriormente, una vez que se ha verificado que su comportamiento
es el esperado, se puede integrar dicha subrutina en el programa que la
va a utilizar. Otra ventaja de programar utilizando subrutinas es que si
una misma tarea se realiza en varios puntos del programa, no es nece-
sario escribir el mismo cédigo una y otra vez a lo largo del programa.
Si no fuera posible utilizar subrutinas, se deberia repetir el mismo frag-
mento de cédigo en todas y en cada una de las partes del programa en
las que este fuera necesario. Es mas, si en un momento dado se descubre
un error en un trozo de cédigo que se ha repetido en varias partes del
programa, seria necesario revisarlas todas para rectificar en cada una de
ellas el mismo error. De igual forma, cualquier mejora de dicha parte
del cédigo implicaria revisar todas las partes del programa en las que
se ha copiado. Por el contrario, si se utiliza una subrutina y se detecta
un error o se quiere mejorar su implementacién, basta con modificar su
c6digo. Una sola vez.

Esta divisién de los programas en subrutinas es importante porque
permite estructurarlos y desarrollarlos de forma modular: cada subruti-
na es un trozo de cédigo independiente que realiza una tarea, y el resto
del programa puede hacerse sabiendo inicamente qué hace la subrutina
y cudl es su interfaz, es decir, con qué parametros debe comunicarse
con ella. No es necesario saber como esta programado el cédigo de la
subrutina para poder utilizarla en un programa. Por esta misma razon,

6.1. Llamada y retorno de una subrutina

135

la mayor parte de depuradores de cédigo y simuladores —incluyendo
QtARMSim—, incluyen la opcién de depurar paso a paso pasando por
encima —step over—. Esta opcién de depuracion, cuando se encuentra
con una llamada a una subrutina, ejecuta la subrutina como si fuera una
Unica instruccion, en lugar de entrar en su cédigo. Sabiendo qué pasar
a una subrutina y qué valores devuelve, es decir conociendo su interfaz,
y habiéndola probado con anterioridad, es posible centrarse en la depu-
racion del resto del programa de forma independiente, aprovechando la
modularidad comentada anteriormente.

Asi pues, la utilizacién de subrutinas permite reducir tanto el tiem-
po de desarrollo del cédigo como el de su depuraciéon. Sin embargo, el
uso de subrutinas tiene una ventaja de mayor calado: subproblemas que
aparecen con frecuencia en el desarrollo de ciertos programas pueden
ser implementados como subrutinas y agruparse en bibliotecas (libraries
en inglés). Cuando un programador requiere resolver un determinado
problema ya resuelto por otro, le basta con recurrir a una determinada
biblioteca y llamar la subrutina adecuada. Es decir, gracias a la agrupa-
cién de subrutinas en bibliotecas, el mismo cédigo puede ser reutilizado
por muchos programas.

Desde el punto de vista de los mecanismos proporcionados por un
procesador para soportar el uso de subrutinas, el diseno de una arquitec-
tura debe hacerse de tal forma que facilite la realizacién de las siguientes
acciones: 1) la llamada a una subrutina; 11) el paso de los parametros con
los que debe operar la subrutina; 111) la devolucién de los resultados; y
1v) la continuacién de la ejecucion del programa a partir de la siguiente
instruccién en coédigo méquina a la que invocé a la subrutina.

En este capitulo se presentan los aspectos basicos de la gestion de
subrutinas en ensamblador Thumb de ARM: cémo llamar y retornar de
una subrutina y cémo intercambiar informacién entre el programa que
llama a la subrutina y ésta por medio de registros. El siguiente capitulo
mostrard aspectos mas avanzados de dicha gestién.

6.1. Llamada y retorno de una subrutina

ARM Thumb proporciona las siguientes instrucciones para gestionar
la llamada y el retorno de una subrutina: «bl etiqueta» y «mov pc, Llr».
La instruccién «bl etiqueta» se utiliza para llamar a una subrutina
que comienza en la direccién de memoria indicada por dicha etiqueta.
Cuando el procesador ejecuta esta instruccion, lleva a cabo las siguientes
acciones:

= Almacena la direccién de memoria de la siguiente instruccién a
la que contiene la instrucciéon «bl etiqueta» en el registro rl4

«Library» se suele tra-
ducir erréneamente en
castellano como «libre-
riay; la traduccion co-
rrecta es «bibliotecay.

6.1. Llamada y retorno de una subrutina

136

también llamado LR, por link register, registro enlace). Es decir
) p g g b
LR < PC + 4!,

s Transfiere el control del flujo del programa a la direcciéon indicada
en el campo «etiqueta». Es decir, se realiza un salto incondicional
a la direccién especificada en «etiqueta» (PC <— etiqueta).

La instruccién «mov pc, 1r» se utiliza al final de la subrutina para re-
tornar a la instruccién siguiente a la que la habia llamado. Cuando el
procesador ejecuta esta instruccién, actualiza el contador de programa
con el valor del registro LR, lo que a efectos reales implica realizar un
salto incondicional a la direccién contenida en el registro LR. Es decir,
PC < LR.

Asi pues, las instrucciones «bl etiqueta» y «mov pc, lr» permiten
programar de forma sencilla la llamada y el retorno desde una subruti-
na. En primer lugar, basta con utilizar «bl etiqueta» para llamar a la
subrutina. Cuando el procesador ejecute dicha instruccién, almacenard
en LR la direcciéon de vuelta y saltard a la direccién indicada por la eti-
queta. Al final de la subrutina, para retornar a la siguiente instruccion
a la que la llamo, es suficiente con utilizar la instruccién «mov pc, lr».
Cuando el procesador ejecute dicha instruccién, sobreescribira el PC con
el contenido del registro LR, que enlaza a la instruccion siguiente a la que
llamé a la subrutina. La tinica precaucion que conviene tomar es que el
contenido del registro LR no se modifique durante la ejecucién de la su-
brutina. Este funcionamiento queda esquematizado en la Figura 6.1, en
la que se puede ver como desde una parte del programa, a la que se
suele llamar programa invocador, se realizan tres llamadas a la parte del
programa correspondiente a la subrutina.

Programa invocador \ Subrutina '\
bl subr W ubr:
~_| R
< < T
bl subr L . ,7\§?* mov pc,1r
- .

bl subr

Figura 6.1: Llamada y retorno de una subrutina

El siguiente c6digo muestra un programa de ejemplo en ensamblador
de ARM que utiliza una subrutina llamada «suma». Esta subrutina suma

!La instruccién «bl etiqueta» se codifica utilizando dos medias palabras, de ahi
que al PC se le sume 4 para calcular la direccién de retorno.

© 0 N O U W NN =

NN N NN = e e e e e
W N R O © 0NN O Ut W N = O

26
27
28
29
30
31
32

6.1. Llamada y retorno de una subrutina 137
los valores almacenados en los registros r@ y rl, y devuelve la suma de
ambos en el registro r6. Como se puede observar, la subrutina se llama
desde dos puntos del programa principal —la primera linea del programa
principal es la etiquetada con «main»—.
06_suma_valor.s &
.data
datos: .word 5, 8, 3, 4
sumal: .Space 4
suma2: .space 4
.text
@ ____________________
@ Programa invocador
@ ____________________
main: ldr r4, =datos
ldr ro, [r4]
ldr rl, [rd4, #4]
primera: bl suma
ldr r5, =sumal
str r@, [r5]
ldr r0, [rd4, #8]
ldr rl, [rd4, #12]
segunda: bl suma
ldr r5, =suma2
str r@, [r5]
stop: wfi
@ ____________________
@ Subrutina
@ ____________________
suma: add ro, ro, rl
mov pc, lr
.end
> 6.1 Copia el programa anterior en el simulador y mientras realizas una

ejecucion paso a paso contesta a las siguientes preguntas. Utiliza la
versién de paso a paso entrando (step into), ya que la versién paso
a paso por encima (step over) en lugar de entrar en la subrutina,
que es lo que se quiere en este caso, la ejecutaria como si se tratara
de una tnica instruccién.

http://lorca.act.uji.es/libro/introARM2016/codigo/06_suma_valor.s

6.2. Paso de parametros

138

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

6.1.6

,Cudl es el contenido del PC y del registro LR antes y des-
pués de ejecutar la instrucciéon «bl suma» etiquetada como
«primera»?

Antes Después

PC

LR

;Cudl es el contenido de los registros PC y LR antes y después
de ejecutar la instruccién «mov pc, lr» la primera vez que
se ejecuta la subrutina «suma»?

Antes Después

PC

LR

,Cudl es el contenido del PC y del registro LR antes y des-
pués de ejecutar la instrucciéon «bl suma» etiquetada como
«segunda»?

Antes Después

PC

LR

(Cudl es el contenido de los registros PC y LR antes y después
de ejecutar la instrucciéon «mov pc, lr» la segunda vez que
se ejecuta la subrutina «suma»?

Antes Después

PC

LR

Anota el contenido de las variables «sumal» y «suma2» des-
pués de ejecutar el programa anterior.

Crea un nuevo programa a partir del anterior en el que la
subrutina «suma» devuelva en ro el doble de la suma de rly
ro. Ejecuta el programa y anota el contenido de las variables
«sumal» y «suma2.

6.2. Paso de parametros

Se denomina paso de parametros al mecanismo mediante el cual el
programa invocador y la subrutina intercambian datos. Los parametros

6.2. Paso de parametros

139

intercambiados entre el programa invocador y la subrutina pueden ser
de tres tipos segun la direccién en la que se transmita la informacion:
de entrada, de salida o de entrada/salida. Los parametros de entrada
proporcionan informacion del programa invocador a la subrutina. Los de
salida devuelven informacién de la subrutina al programa invocador. Por
ultimo, los de entrada/salida proporcionan informacién del programa
invocador a la subrutina y devuelven informacién de la subrutina al
programa invocador. Por otro lado, para realizar el paso de parametros
es necesario disponer de algtin recurso fisico donde se pueda almacenar
y leer la informacion que se quiere transferir. Las dos opciones més
comunes son los registros o la memoria —mediante una estructura de
datos llamada pila, que se describira en el siguiente capitulo—. El que
se utilicen registros, la pila o ambos, depende de la arquitectura en
cuestion y del convenio adoptado en dicha arquitectura para el paso de
parametros.

Para poder utilizar las subrutinas conociendo tinicamente su interfaz,
pudiendo de esta manera emplear funciones de bibliotecas, es necesario
establecer un convenio acerca de cémo pasar y devolver los pardmetros
para que cualquier programa pueda utilizar cualquier subrutina aunque
estén programados de forma independiente. Este capitulo se va a ocupar
unicamente del paso de parametros por medio de registros y, en este
caso, la arquitectura ARM adopta como convenio el paso mediante los
registros r@, rl, r2 y r3, ya sea para parametros de entrada, de salida o de
entrada/salida. Para aquellos casos en los que se tengan que pasar méas
de 4 parametros, el convenio define como pasar el resto de parametros
mediante la pila, tal y como se verd en el siguiente capitulo.

El dltimo aspecto a tener en cuenta del paso de parametros es como
se transfiere cada uno de los parametros. Hay dos formas de hacerlo: por
valor o por referencia. Se dice que un parametro se pasa por valor cuando
lo que se transfiere es el dato en si. Por otra parte, un parametro se pasa
por referencia cuando lo que se transfiere es la direccién de memoria en
la que se encuentra dicho dato.

En base a todo lo anterior, el desarrollo de una subrutina implica
determinar en primer lugar:

s El niimero de pardmetros necesarios.
» Cudles son de entrada, cudles de salida y cudles de entrada/salida.
= Si se van a utilizar registros o la pila para su transferencia.

= Qué parametros deben pasarse por valor y qué parametros por
referencia.

=W N =

6.2. Paso de parametros

140

Naturalmente, el programa invocador debera ajustarse a los reque-
rimientos que haya fijado el desarrollador de la subrutina en cuanto a
como se debe realizar el paso de parametros.

Los siguientes subapartados muestran cémo pasar parametros por
valor y por referencia, cémo decidir qué tipo es el mas adecuado para
cada parametro y, por ultimo, cémo planificar el desarrollo de una subru-
tina por medio de un ejemplo méas elaborado. En dichos subapartados
se muestran ejemplos de pardmetros de entrada, de salida y de entra-
da/salida y como seguir el convenio de ARM para pasar los pardmetros
mediante registros.

6.2.1. Paso de parametros por valor

Como se ha comentado, un parametro se pasa por valor cuando ini-
camente se transfiere su valor. El paso de parametros por valor implica
la siguiente secuencia de acciones (véase la Figura 6.2):

1. Antes de realizar la llamada a la subrutina, el programa invoca-
dor carga el valor de los parametros de entrada en los registros
correspondientes.

2. La subrutina, finalizadas las operaciones que deba realizar y antes
de devolver el control al programa invocador, carga el valor de los
parametros de salida en los registros correspondientes.

3. El programa invocador recoge los pardmetros de salida de los re-
gistros correspondientes.

Programa invocador \

1. Cargar el valor de los parametros de entrada en los registros Subrutina \

2. Llamar a la subrutina 3. Realizar operaciones

6. Almacenar los pardmetros de salida - 4. Cargar parametros de salida en registros

7. Continuar programa 5. Retornar

Figura 6.2: Paso de pardmetros por valor

En el siguiente codigo, ya visto previamente, se puede observar c6mo
se pasan por valor dos pardmetros de entrada y uno de salida.

06_suma_valor.s =

.data
datos: .word 5, 8, 3, 4
sumal: .space 4

sumaz2: .Sspace 4

http://lorca.act.uji.es/libro/introARM2016/codigo/06_suma_valor.s

© 0w 9 O !

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

6.2. Paso de parametros

141

main:

primera:

segunda:

stop:

suma:

> 6.2 Contesta las siguientes preguntas con respecto al cédigo anterior:

6.2.1 Enumera los registros que se han utilizado para pasar los
parametros a la subrutina.

6.2.2
6.2.3

6.2.4

6.2.5

ldr r4, =datos

ldr ro, [r4]

ldr rl, [rd4, #4]
bl suma

ldr r5, =sumal
str r@, [r5]

ldr r0, [r4, #8]
ldr rl, [rd4, #12]
bl suma

ldr r5, =suma2
str r@, [r5]

wfi

add ro, ro, rl
mov pc, lr

.end

. Los anteriores registros se han utilizado para pasar para-
metros de entrada o de salida?

Anota qué registro se ha utilizado para devolver el resultado
al programa invocador.

El anterior registro se ha utilizado para pasar un pardmetro
de entrada o de salida?

Senala qué instrucciones se corresponden a cada una de las
acciones enumeradas en la Figura 6.2. (Hazlo dnicamente
para la primera de las dos llamadas.)

© 0 N O Ut W N =

=
= o

6.2. Paso de parametros

142

6.2.2. Paso de parametros por referencia

Como ya se ha comentado, el paso de pardmetros por referencia
consiste en pasar las direcciones de memoria en las que se encuentran
los parametros. Para pasar los parametros por referencia se debe realizar
la siguiente secuencia de acciones (véase la Figura 6.3):

= Antes de realizar la llamada a la subrutina, el programa invocador
carga en los registros correspondientes, las direcciones de memoria
en las que estd almacenada la informacién que se quiere pasar.

s La subrutina carga en registros el contenido de las direcciones de
memoria indicadas por los parametros de entrada y opera con ellos
(recuerda que ARM no puede operar directamente con datos en
memoria).

= La subrutina, una vez ha finalizado y antes de devolver el control
al programa principal, almacena los resultados en las direcciones
de memoria proporcionadas por el programa invocador.

Programa invocador \
1. Cargar la direcci6n de los pardmetros en registros Subrutina \
2. Llamar a la subrutina 3. Cargar el valor de los pardmetros en registros
7. Continuar programa 4. Realizar operaciones

5. Almacenar parametros de salida en memoria

6. Retornar

Figura 6.3: Paso de parametros por referencia

El siguiente programa muestra un ejemplo en el que se llama a una
subrutina utilizando el paso de parametros por referencia tanto para los
parametros de entrada como los de salida.

06_suma_referencia.s =

.data
datos: .word 5, 8, 3, 4
sumal: .Space 4
suma2: .space 4
text
@ ____________________
@ Programa invocador
@ ____________________
main: ldr r0, =datos

ldr rl, =datos + 4

http://lorca.act.uji.es/libro/introARM2016/codigo/06_suma_referencia.s

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

6.2. Paso de parametros

143

ldr r2, =sumal
primera: bl suma

ldr r0, =datos + 8

ldr rl, =datos + 12

ldr r2, =suma2
segunda: bl suma

stop: wfi

@ ____________________

@ Subrutina

@ ____________________
suma: ldr ro, [r0]

ldr rl1, [rl]

add ro, ro, rl

str r0, [r2]

mov pc, lr

end

> 6.3 Contesta las siguientes preguntas con respecto al codigo anterior:

6.3.1 Enumera los registros que se han utilizado para pasar la
direcciéon de los pardmetros de entrada a la subrutina.

6.3.2 Anota qué registro se ha utilizado para pasar la direccién del
parametro de salida a la subrutina.

6.3.3 Senala qué instrucciones se corresponden con cada una de
las acciones enumeradas en la Figura 6.3. (Hazlo inicamente
para la primera de las dos llamadas.)

6.2.3. Paso de parametros, ;por valor o por referencia?

Una vez descritas las dos formas de paso de parametros a una subru-
tina, queda la tarea de decidir cudl de las dos formas, por referencia o
por valor, es mas conveniente para cada parametro. Los ejemplos ante-
riores eran un poco artificiales ya que todos los parametros se pasaban
o bien por valor o por referencia. En la préctica, se debe analizar para
cada parametro cudl es la forma idénea de realizar el paso. Esto im-
plica que por regla general no todos los pardmetros de una subrutina
utilizaran la misma forma de paso. De hecho, la decisién de cémo pa-
sar los pardmetros a una subrutina viene condicionada en gran medida
por la estructura de datos de los parametros que se quieren pasar. Si se

6.2. Paso de parametros

144

trata de un dato de tipo estructurado —vectores, matrices, cadenas, es-
tructuras. .. —, que tienen tamano indeterminado y solo pueden residir
completos en memoria, no hay alternativa posible, el paso siempre se
hace por referencia. Independientemente de si el pardmetro en cuestion
es de entrada, de salida o de entrada/salida. En cambio, si el dato que se
quiere pasar es de tipo escalar —un ntimero entero, un nimero real, un
caracter...—, que puede estar contenido temporalmente en un registro,
entonces si se puede decidir si se pasa por valor o por referencia. Hacer-
lo de una forma u otra depende entonces del sentido en el que se va a
transferir al pardametro, es decir, si se trata de un parametro de entrada,
de salida o de entrada/salida. La siguiente lista muestra las opciones
disponibles segtn el tipo de pardametro:

s Pardmetro de entrada. Un pardametro de este tipo es utilizado por
la subrutina pero no deberia ser modificado, por lo que es preferible
pasar este tipo de parametros por valor.

s Pardmetro de salida. Un parametro de este tipo permite a la su-
brutina devolver el resultado de las operaciones realizadas. Para
este tipo de parametros se puede optar por cualquiera de las opcio-
nes: que el parametro sea devuelto por valor o por referencia. Si se
hace por valor, la subrutina devuelve el dato utilizando el registro
reservado para ello. Si se hace por referencia, la subrutina alma-
cenara en memoria el dato, pero para ello el programa invocador
debera haberle pasado previamente en qué direccién de memoria
debera almacenarlo.

» Pardmetro de entrada/salida. Un pardmetro de este tipo propor-
ciona un valor que la subrutina necesita conocer y en el que poste-
riormente devolverd el resultado. En este caso, se debe pasar por
referencia.

6.2.4. Un ejemplo mas elaborado

En este apartado se plantea el desarrollo de un programa en lengua-
je ensamblador donde se aplican todos los conceptos presentados hasta
ahora en el capitulo. El programa que se quiere desarrollar tiene por
objeto calcular cudntos elementos de un vector dado tienen un determi-
nado valor n, p.e., 12. Para poder practicar el desarrollo de subrutinas
y comprobar que es posible llamar a la misma subrutina con parame-
tros distintos, la solucién que se propone incluye el desarrollo de una
subrutina que devuelva el nimero de elementos de un vector que son
menores a un numero dado. De esta forma, serd necesario llamar a di-
cha subrutina con los valores n + 1, primero, y n, después, 13 y 12 en el

=W N =

© 00 N & w»

11
12
13

6.2. Paso de parametros

145

ejemplo, y restar los valores devueltos por dichas llamadas para obtener
el resultado buscado —el niimero de elementos que son iguales a n—.

A continuacién se muestra una posible implementaciéon en Python3
de dicho programa. Como se puede ver, el programa consta de una su-
brutina, «nummenorque», que recibe los parametros «vector_s», «dim_s»
y «dato_s». Esta subrutina recorre el vector «vector_s», cuyo tamafio
viene dado por «dim_s», contabilizando el nimero de elementos que son
menores que «dato_s»; y devuelve dicho nimero como resultado. Por su
parte, el programa principal inicializa un vector, su tamano y la varia-
ble «numy»; a continuacién, llama dos veces a la anterior subrutina, con
«num+1» y «num», respectivamente, almacenando el resultado de ambas
llamadas; y finalmente, resta ambos resultados para obtener el ntimero
de elementos del vector que son iguales a «num».

def nummenorque(vector_s, dim_s, dato_s):
n=20
for i in range(dim_s):
if vector_s[i] < dato_s:
n=n+1;
return n

vector = [5, 3, 5, 5, 8, 12, 12, 15, 12]
dim = 9

num = 12

resl = nummenorque(vector, dim, num + 1)
res2 = nummenorque(vector, dim, num)

res = resl - res2

En los siguientes ejercicios se propondra desarrollar paso a paso una
version en ensamblador de dicho programa. Asi pues, en primer lugar, se
debera desarrollar una subrutina que contabilice cuintos elementos de
un vector son menores a un valor dado. Para ello, hay que determinar qué
parametros debe recibir dicha subrutina, asi como qué registros se van a
utilizar para ello, y cudles se pasaran por referencia y cuales por valor.
Una vez desarrollada la subrutina, y teniendo en cuenta los parametros
que requiere, se deberd desarrollar la parte del programa que llama dos
veces a dicha subrutina y calcula el nimero de elementos del vector dado
que son iguales a n restando ambos resultados.

> 6.4 Antes de desarrollar el cédigo de la subrutina, contesta las si-
guientes preguntas:

a) {Qué pardmetros debe pasar el programa invocador a la su-
brutina? ;Y la subrutina al programa invocador?

b) (Cudles son de entrada y cudles de salida?

6.3. Ejercicios

146

c¢) (Cudles se pasan por referencia y cuéles por valor?

d) ;Qué registros vas a utilizar para cada uno de ellos?

> 6.5 Completa el desarrollo del fragmento de cédigo correspondiente
a la subrutina.

> 6.6 Desarrolla el fragmento de c6digo correspondiente al programa
invocador.

> 6.7 Comprueba que el programa escrito funciona correctamente. ; Qué
valor se almacena en «res» cuando se ejecuta? Modifica el conteni-
do del vector «vectory, ejecuta de nuevo el programa y comprueba
que el resultado obtenido es correcto.

6.3. Ejercicios

Ejercicios de nivel medio

> 6.8 Modifica la subrutina y el programa principal desarrollados en
los Ejercicios 6.5 y 6.6, tal y como se describe a continuacién:

a) Modifica la subrutina del Ejercicio 6.5 para que dado un vector,
su dimension y un nimero n, devuelva el nimero de elementos
del vector que son iguales a dicho ntimero. Cambia el nombre
de la subrutina a «numigualque.

b) Modifica el programa principal del Ejercicio 6.6 para que alma-
cene en memoria el nimero de elementos de un vector —p.e el

que aparecia en el ejercicio original, [5, 3,5, 5,8,12,12,15, 12]— que

son iguales a 3 y el nimero de elementos que son iguales a 5
—utilizando la subrutina desarrollada en el apartado a) de este
ejercicio—.

Ejercicios avanzados

> 6.9 Realiza los siguientes desarrollos:

a) Implementa una subrutina a la que se le pase (la direccién de
comienzo de) una cadena de caracteres que finalice con el ca-
racter nulo y devuelva su longitud. Es recomendable que antes
de empezar a escribir la subrutina, te hagas las preguntas del
Ejercicio 6.4.

6.3. Ejercicios

147

b)

Implementa un programa en el que se inicialicen dos cadenas de
caracteres y calcule cudl de las dos cadenas es més larga. Dicho
programa deberad escribir un 1 en una posiciéon de memoria
etiquetada como «res» si la primera cadena es méas larga que
la segunda y un 2 en caso contrario. Para obtener el tamafio de
cada cadena se debera llamar a la subrutina desarrollada en el
apartado a) de este ejercicio.

Ejercicios adicionales

> 6.10 Realiza el siguiente ejercicio:

a)

Desarrolla una subrutina que calcule cuantos elementos de un
vector de enteros son pares (multiplos de 2). La subrutina debe
recibir como parametros el vector y su dimension y devolver el
nimero de elementos pares.

Implementa un programa en el que se inicialicen dos vectores de
10 elementos cada uno, «vectorly y «vector2», y que almacene
en sendas variables, «numparesl» y «numpares2», el nimero de
elementos pares de cada uno de ellos. Naturalmente, el progra-
ma debera utilizar la subrutina desarrollada en el apartado a)
de este ejercicio.

> 6.11 Realiza el siguiente ejercicio:

2)

b)

Desarrolla una subrutina que sume los elementos de un vector
de enteros de cualquier dimensién.

Desarrolla un programa que sume todos los elementos de una
matriz de dimensiéon m x n. Utiliza la subrutina desarrollada
en el apartado a) de este ejercicio para sumar los elementos de
cada fila de la matriz.

En la versién que se implemente de este programa utiliza una
matriz con m = 5y n = 3, es decir, de dimensiéon 5 x 3 con
valores aleatorios (los que se te vayan ocurriendo sobre la mar-
cha). Se debe tener en cuenta que la matriz deberia poder tener
cualquier dimensién, asi que se deberd utilizar un bucle para
recorrer sus filas.

CArPiTULO

Gestion de subrutinas

Indice
71, Lavpila . ..o 149
7.2. Bloque de activacion de una subrutina 154
7.3. Ejercicios oo 165

Cuando se realiza una llamada a una subrutina en un lenguaje de alto
nivel, los detalles de cémo se cede el control a dicha subrutina y la ges-
tién de informaciéon que dicha cesidon supone, quedan convenientemente
ocultos. Sin embargo, un compilador, o un programador en ensambla-
dor, si debe explicitar todos los aspectos que conlleva la gestion de la
llamada y ejecucién de una subrutina. Algunos de dichos aspectos se
trataron en el capitulo anterior. En concreto, la llamada a la subrutina,
la transferencia de informacién entre el programa invocador y la subru-
tina, y la devolucién del control al programa invocador cuando finaliza
la ejecucién de la subrutina. En cualquier caso, se omitieron en dicho
capitulo una serie de aspectos como son: I) jqué registros puede modi-
ficar una subrutina?, 11) jcémo preservar el valor de los registros que no
pueden modificarse al llamar a una subrutina?, 111) jcémo pasar mas de
cuatro pardmetros? y 1V) jcomo preservar el contenido del registro LR si
la subrutina tiene que llamar a su vez a otra subrutina?

Los aspectos que, por simplicidad, no se trataron en el capitulo ante-
rior se corresponden con la gestién de la informaciéon que deben realizar
las subrutinas. Esta gestion abarca las siguientes tareas:

» Kl almacenamiento y posterior recuperacién de la informacion al-
macenada en determinados registros.

148

7.1. La pila

149

s El almacenamiento y recuperacién de la direcciéon de retorno para
permitir que una subrutina llame a otras subrutinas o a si misma
(recursividad).

s La creacién y utilizaciéon de variables locales de la subrutina.

Con respecto al primero de los aspectos no vistos en el capitulo an-
terior, ;qué registros puede modificar una subrutina?, el convenio de
ARM establece que una subrutina solo puede modificar el contenido de
los registros r0 al r3. ;Qué implicaciones tiene esto? Desde el punto de
vista del desarrollo del programa invocador, se ha de tener en cuenta
que cada vez que se llama a una subrutina, los registros r0 al r3 han
podido ser modificados, por lo que una vez realizada la llamada, se debe
suponer que no mantienen el valor que tuvieran antes de la llamada.
Una consideracién adicional es que para almacenar un dato que se quie-
ra utilizar antes y después de la llamada una subrutina, serd conveniente
utilizar un registro del r4 en adelante, ya que la subrutina tiene la obli-
gacion de preservar su contenido. Desde el punto de vista del desarrollo
de la subrutina, el que solo se puedan modificar los registros del ro al r3
implica que, salvo si la subrutina es muy sencilla y es posible desarro-
llarla contando tinicamente con dichos registros, serd necesario crear y
gestionar un espacio de memoria donde la subrutina pueda almacenar la
informacién adicional que necesite durante su ejecucién. A este espacio
de memoria, cuya definicién se matizard mas adelante, se le denomina
bloque de activaciéon de la subrutina y se implementa por medio de una
estructura de datos conocida coma pila. La gestiéon del bloque de ac-
tivacién de una subrutina constituye un tema central en la gestién de
subrutinas.

El resto de este capitulo esta organizado como sigue. El primer apar-
tado describe la estructura de datos conocida como pila y como se utiliza
en la arquitectura ARM. El segundo apartado describe cémo se cons-
truye y gestiona el bloque de activaciéon de una subrutina. Por tltimo,
se proponen una serie de ejercicios.

7.1. La pila

Una pila o cola LIFO (Last In First Out) es una estructura de
datos que permite anadir y extraer datos con la peculiaridad de que
los datos introducidos solo se pueden extraer en el orden contrario al
que fueron introducidos. Anadir datos en una pila recibe el nombre de
apilar (push, en inglés) y extraer datos de una pila, desapilar (pop, en
inglés). Una analogia que se suele emplear para describir una pila es la
de un montén de libros puestos uno sobre otro. Sin embargo, para que
dicha analogia sea correcta, es necesario limitar la forma en la que se

Una subrutina solo
puede modificar los
registros del ro al r3,
los utilizados para el
paso de pardmetros.

7.1. La pila

150

pueden afiadir o quitar libros de dicho montén. Cuando se quiera anadir
un libro, éste debera colocarse encima de los que ya hay (lo que implica
que no es posible insertar un libro entre los que ya estédn en el montén).
Por otro lado, cuando se quiera quitar un libro, solo se podréa quitar el
libro que esté mas arriba en el montén (por tanto, no se puede quitar
un libro en particular si previamente no se han quitado todos los que
estén encima de él). Teniendo en cuenta dichas restricciones, el montén
de libros actiia como una pila, ya que solo se pueden colocar nuevos
libros sobre los que ya estan en el montén y el dltimo libro colocado en
la pila de libros sera el primero en ser sacado de ella.

Un computador de propdsito general no dispone de un dispositivo
especifico que implemente una pila en la que se puedan introducir y
extraer datos. En realidad, la pila se implementa por medio de dos de
los elementos ya conocidos de un computador: la memoria y un registro.
La memoria sirve para almacenar los elementos que se van introduciendo
en la pila y el registro para apuntar a la direcciéon del dltimo elemento
introducido en la pila (que recibe el nombre de tope de la pila).

Puesto que la pila se almacena en memoria, es necesario definir el
sentido de crecimiento de la pila con respecto a las direcciones de memo-
ria utilizadas para almacenarla. La arquitectura ARM sigue el convenio
mas habitual: la pila crece de direcciones de memoria altas a direcciones
de memoria bajas. Es decir, cuando se apilen nuevos datos, estos se al-
macenaran en direcciones de memoria més bajas que los que se hubieran
apilado previamente. Por tanto, al anadir elementos, la direccién de me-
moria del tope de la pila disminuird; y al quitar elementos, la direccién
de memoria del tope de la pila aumentara.

Como ya se ha comentado, la direccién de memoria del tope de la pila
se guarda en un registro. Dicho registro recibe el nombre de puntero
de pila o SP (de las siglas en inglés de stack pointer). La arquitectura
ARM utiliza como puntero de pila el registro ri3.

Como se puede intuir a partir de lo anterior, introducir y extraer da-
tos de la pila requeriréd actualizar el puntero de pila y escribir o leer de la
memoria con un cierto orden. Afortunadamente, la arquitectura ARM
proporciona dos instrucciones que se encargan de realizar todas las ta-
reas asociadas al apilado y al desapilado: «push» y «pop», respectiva-
mente, que se explican en el siguiente apartado. Sin embargo, y aunque
para un uso basico de la pila es suficiente con utilizar las instruccio-
nes «pushy» y «pop», para utilizar la pila de una forma maés avanzada,
como se verd mas adelante, es necesario comprender en qué consisten
realmente las acciones de apilado y desapilado.

La operacién apilar se realiza en dos pasos. En el primero de ellos,
se decrementa el puntero de pila en tantas posiciones como el tamafio
en bytes alineado a 4 de los datos que se desean apilar. En el segundo,
se almacenan los datos que se quieren apilar a partir de la direccién

7.1. La pila 151

indicada por el puntero de pila. Asi por ejemplo, si se quisiera apilar la
palabra que contiene el registro r4, los pasos que se deberan realizar son:
1) decrementar el puntero de pila en 4 posiciones, «sub sp, sp, #4», y
11) almacenar el contenido del registro r4 en la direccién indicada por SP,
«str r4, [spl». La Figura 7.1 muestra el contenido de la pila y el valor
del registro SP antes y después de apilar el contenido del registro r4.

Direcciones
inferiores

SP. =1 Contenido del registro r4

sp —>

Direcciones
superiores

(@) (b)

Figura 7.1: La pila antes y después de apilar el registro r4

La operacién desapilar también consta de dos pasos. En el primero
de ellos se recuperan los datos que estdn almacenados en la pila. En
el segundo, se incrementa el puntero de pila en tantas posiciones como
el tamafio en bytes alineado a 4 de los datos que se desean desapilar.
Asi por ejemplo, si se quisiera desapilar una palabra para cargarla en
el registro r4, los pasos que se deberan realizar son: 1) cargar el dato
que se encuentra en la direccién indicada por el registro SP en el registro
rd, «ldr r4, [spl», e II) incrementar en 4 posiciones el puntero de pila,
«add sp, sp, #4». La Figura 7.2 muestra el contenido de la pila y el
valor del registro SP antes y después de desapilar una palabra.

Direcciones
inferiores

sp —| Contenido del registro r4

sp —

Direcciones
superiores

(@) (b)

Figura 7.2: La pila antes y después de desapilar el registro r4

7.1. La pila

152

> 7.1 Contesta las siguientes preguntas relacionadas con la operacién
apilar.

7.1.1

7.1.2

7.1.3

Suponiendo que el puntero de pila contiene 0x7fffeffc y
que se desea apilar una palabra (4 bytes), ;qué valor debera
pasar a tener el puntero de pila antes de almacenar la nueva
palabra en la pila? ;Qué instruccién se utilizard para hacerlo
en el ensamblador ARM?

,Qué instruccién se utilizard para almacenar el contenido del
registro r5 en la direcciéon apuntada por el puntero de pila?

A partir de las dos preguntas anteriores, indica qué dos ins-
trucciones permiten apilar en la pila el registro r5.

> 7.2 El siguiente fragmento de cddigo apila, uno detras de otro, el
contenido de los registros r4 y r5. Copia dicho programa en el
simulador, cambia al modo de simulaciéon y realiza los ejercicios
que se muestran a continuacion.

© 0 N O GoR W N

=
= O

main:

stop:

7.2.1

7.2.2

07_apilar_r4r5.s =

.text

mov r4, #10 @ rd <- 10

mov r5, #13 @r5<-13

sub sp, sp, #4 @ Actualiza sp sp <- sp -4
str r4, [spl @ Apila r4 [sp] <- r4
sub sp, sp, #4 @ Actualiza sp sp <- sp - 4
str r5, [sp] @ Apila r5 [sp] <- r5

wfi

.end

Ejecuta el programa paso a paso y comprueba en qué po-
siciones de memoria, pertenecientes a la pila, se almacenan
los contenidos de los registros r4 y r5.

Modifica el programa anterior para que en lugar de actua-
lizar el puntero de pila cada vez que se pretende apilar un
registro, se realice una tunica actualizacién del puntero de
pila al principio y, a continuacién, se almacenen los registros
r4 y r5. Los registros deben quedar apilados en el mismo
orden que en el programa original.

> 7.3 Contesta las siguientes preguntas relacionadas con la operacién
desapilar.

http://lorca.act.uji.es/libro/introARM2016/codigo/07_apilar_r4r5.s

0w N O U W N =

7.1. La pila

153

7.3.1 ;Qué instruccion se utilizard para desapilar el dato contenido
en el tope de la pila y cargarlo en el registro r5?

7.3.2 Suponiendo que el puntero de pila contiene 0x7fffeff8, ;qué
valor debera pasar a tener el puntero de pila después de
desapilar una palabra (4 bytes) de la pila? ;Qué instruccion
en ensamblador ARM se utilizard para actualizar el puntero
de pila?

7.3.3 A partir de las dos preguntas anteriores, indica qué dos ins-
trucciones permiten desapilar de la pila el registro r5.

7.1.1. Operaciones sobre la pila empleando instrucciones
«push» y «pop»

Como ya se ha comentado antes, si simplemente se quiere apilar el
contenido de uno o varios registros o desapilar datos para cargarlos en
uno o varios registros, la arquitectura ARM facilita la realizacion de
dichas acciones proporcionando dos instrucciones que se encargan de
realizar automaticamente todos los pasos vistos en el apartado anterior:
«pushy» y «pop». Como estas instrucciones permiten apilar o desapilar
varios registros, su sintaxis es especifica y estd pensada para tal fin. Asi,
entre las llaves que encierran el operando se pueden incluir: varios regis-
tros separados por comas (ej. «{rl, r3, r6, lr}»), un rango completo
de registros indicando el primero y el tltimo y separandolos con un guién
(€j. «{r3-r7}») o una combinacién de ambos (ej. «{rl-r5, r7, pc}»).
Es importante indicar que ademas de los registros de proposito general
se puede incluir el registro «LR» en una instruccién «push» y el registro
PC en una «pop». De esta manera, se puede guardar en la pila la direccién
de retorno mediante la instruccién «push» y copiarla en el contador de
programa mediante la instruccién «pop». A lo largo de este capitulo se
verd la conveniencia de ello. A modo de ejemplo de utilizacién de las
instrucciones «push» y «pop», el siguiente fragmento de cédigo apila el
contenido de los registros r4 y r5 empleando la instruccién «pushy» y
recupera los valores de dichos registros mediante la instrucciéon «pop».

07_apilar_r4r5_v2.s &
.text
main:
mov r4, #10
mov r5, #13
push {r5, r4}
add r4, r4, #3
sub r5, r5, #3
pop {r5, r4}

«push»
«pop»

http://lorca.act.uji.es/libro/introARM2016/codigo/07_apilar_r4r5_v2.s

7.2. Bloque de activacién de una subrutina

154

9
10 | stop: wfi

11 .end

> 7.4 Copia el programa anterior en el simulador y contesta a las si-
guientes preguntas mientras realizas una ejecucion paso a paso.

7.4.1

7.4.2

74.3

744

7.4.5

7.4.6

,,Cudl es el contenido del puntero de pila antes y después de
la ejecucién de la instrucciéon «push»?

LEn qué posiciones de memoria, pertenecientes a la pila, se
almacenan los contenidos de los registros r4 y r5?

;,Qué valores tienen los registros r4 y r5 una vez realizadas
las operaciones de suma y resta?

. Qué valores tienen los registros r4 y r5 tras la ejecucién de
la instruccién «pop»?

;, Cudl es el contenido del puntero de pila tras la ejecucién de
la instruccién «pop»?

Fijate que en el programa se ha puesto «push {r5, r4}». Si
se hubiese empleado la instruccién «push {r4, r5}», jen qué
posiciones de memoria, pertenecientes a la pila, se hubieran
almacenado los contenidos de los registros r4 y r57 Segun es-
to, jcudl es el criterio que sigue ARM para copiar los valores
de los registros en la pila mediante la instruccién «push»?

7.2. Bloque de activacion de una subrutina

Aunque la pila se utiliza para més propdsitos, tiene una especial
relevancia en la gestiéon de subrutinas, ya que es la estructura de datos
ideal para almacenar la informacién requerida por una subrutina. Puesto
que en el apartado anterior se ha explicado qué es la pila, ahora se puede
particularizar la definicién previa de bloque de activacién, para decir
que el bloque de activacién de una subrutina es la parte de la pila
que contiene la informacién requerida por una subrutina. El bloque de
activacién de una subrutina cumple los siguientes cometidos:

s Almacenar la direccién de retorno original, en el caso que la su-
brutina llame a otras subrutinas.

» Proporcionar espacio para las variables locales de la subrutina.

7.2. Bloque de activacién de una subrutina

155

s Almacenar los registros que la subrutina necesita modificar y que el
programa que ha hecho la llamada espera que no sean modificados.

= Mantener los valores que se han pasado como argumentos a la
subrutina.

Los siguientes subapartados describen los distintos aspectos de la
gestion de las subrutinas en los que se hace uso del bloque de activaciéon
de una subrutina. El Subapartado 7.2.1 trata el problema del anidamien-
to de subrutinas —subrutinas que llaman a otras o a si mismas—. El
Subapartado 7.2.2 cémo utilizar el bloque de activaciéon para almacenar
las variables locales de la subrutina. El Subapartado 7.2.3, como preser-
var el valor de aquellos registros que la subrutina necesita utilizar pero
cuyo valor se debe restaurar antes de devolver el control al programa
invocador. El Subapartado 7.2.4 muestra la estructura y gestién del blo-
que de activacion. El Subapartado 7.2.5 describe el convenio completo
que se ha de seguir en las llamadas a subrutinas para la creaciéon y ges-
tion del bloque de activacién. Por tdltimo, el Subapartado 7.2.6 muestra
un ejemplo en el que se utiliza el bloque de activacién para gestionar la
informacién requerida por una subrutina.

7.2.1. Anidamiento de subrutinas

Hasta este momento se han visto ejemplos relativamente sencillos en
los que un programa invocador llamaba una o mas veces a una subru-
tina. Sin embargo, conforme la tarea a realizar se hace mas compleja,
suele ser habitual que una subrutina llame a su vez a otras subrutinas,
que se hacen cargo de determinadas subtareas. Esta situacién en la que
una subrutina llama a su vez a otras subrutinas, recibe el nombre de
anidamiento de subrutinas. Conviene destacar que cuando se implemen-
ta un algoritmo recursivo, se da un caso particular de anidamiento de
subrutinas, en el que una subrutina se llama a si misma para resolver
de forma recursiva un determinado problema.

Cuando se anidan subrutinas, una subrutina que llame a otra debe-
ra devolver el control del programa a la instruccién siguiente a la que
la llamé una vez finalizada su ejecucion. Por su parte, una subrutina
invocada por otra deberd devolver el control del programa a la instruc-
cién siguiente a la que realizé la llamada, que estard en la subrutina
que la llamé. Como se ha visto en el capitulo anterior, cuando se eje-
cuta «bl etiqueta» para llamar a una subrutina, antes de realizar el
salto propiamente dicho, se almacena la direccién de retorno en el regis-
tro LR. También se ha visto que cuando finaliza la subrutina, la forma
de devolver el control al programa invocador consiste en sobreescribir
el registro PC con la direcciéon de vuelta, p.e., utilizando la instruccién
«mov pc, lry». Sidurante la ejecucién de la subrutina, ésta llama a otra,

7.2. Bloque de activacién de una subrutina

156

o a si misma, al ejecutarse la instruccién «bl», se almacenara en el re-
gistro LR la nueva direccién de retorno, sobreescribiendo su contenido
original. Por lo tanto, la direcciéon de retorno almacenada en el regis-
tro LR tras ejecutar el «bl» que llamé a la subrutina inicialmente, se
perdera. Si no se hiciera nada al respecto, cuando se ejecutaran las co-
rrespondientes instrucciones de vuelta, se retornaria siempre a la misma
direccién de memoria, a la almacenada en el registro LR por la tdltima
instruccién «bl». Este error se ilustra en la Figura 7.3, que muestra
de forma esquemadtica qué ocurre si no se gestionan correctamente las
direcciones de retorno.

main: S1: S2:

bl S1 # --> bl S2 # --> bl S3 # -->
r_main: ... r_S1: . r_S2:

(a) Llamada a S1 (b) Llamada a S2 (¢) Llamada a S3
S3: 600 S2:
bl S3

r_S2: 500 # <-.
" # |
mov pc,lr # --> mov pc,lr # --.

LR | r_S2 LR | r_S2

(d) Retorno de S3 (e) Retorno de S2

Figura 7.3: Llamadas anidadas a subrutinas cuando no se gestionan
las direcciones de retorno. Las distintas subfiguras muestran distintos
momentos en la ejecucién de un programa en ensamblador en el que
desde el programa principal se llama a una subrutina «S1», que a su vez
llama a una subrutina «S2», que llama a una subrutina «S3». En cada
subfigura se indica el contenido del registro «LR» tras ejecutar la tltima
instruccién mostrada. Como se puede ver en la subfigura (e), al ejecutar
la instruccién «mov pc,lr», se entra en un bucle sin fin.

> 7.5 En el siguiente programa se llama a subrutinas de forma anidada
sin gestionar las direcciones de vuelta. Edita el programa en el
simulador, ejectitalo paso a paso (utilizando la opcién step into) y
contesta a las siguientes cuestiones.

7.2. Bloque de activacién de una subrutina

157

© 0 N O U W N

NN N NN NNNN R BB R e R R e e e
0 N O Uk WNRE O © 00N Uk W N R O

datos:

res:

main:

saltol:

stop:

sumas:

for:

salto2:

07_1lamada.s &
.data
.word 5, 8, 3, 4
.space 8
.text

ldr r0, =datos @ Pardmetros para sumas
ldr rl1, =res

bl sumas @ Llama a la subrutina sumas
wfi @ Finaliza la ejecucion

mov r7, #2

mov r5, ro

mov r6, rl

cmp r7, #0

beq salto4

ldr r0, [r5] @ Parametros para suma
Udr rl, [r5,#4]
bl suma @ Llama a la subrutina suma
str r@, [r6]
add r5, r5, #8
add r6, r6, #4
sub r7, r7, #1
b for

salto4: mov pc, lr

suma:

salto3:

7.5.1

7.5.2

7.5.3

7.5.4

7.5.5

add ro, ro, rl
mov pc, lr
.end

., Dénde pasa el control del programa tras la ejecucién de la
instruccién etiquetada por «saltol»? ;Qué valor se carga en
el registro LR después de ejecutar la instruccion etiquetada
por «saltol»?

., Dénde pasa el control del programa tras la ejecucién de la
instruccién etiquetada por «salto2»? ;Qué valor se carga en
el registro LR después de ejecutar la instrucciéon etiquetada
por «salto2»?

. Donde pasa el control del programa tras la ejecucién de la
instruccién etiquetada por «salto3»?

., Dénde pasa el control del programa tras la ejecucién de la
instruccién etiquetada por «saltod4»?

Explica qué ocurre cuando el procesador ejecuta dicho pro-
grama.

http://lorca.act.uji.es/libro/introARM2016/codigo/07_llamada.s

7.2. Bloque de activacién de una subrutina

158

Como ha quedado patente en la Figura 7.3 y en el Ejercicio 7.5,
cuando se realizan llamadas anidadas, es necesario almacenar de alguna
forma las distintas direcciones de retorno. Dicho almacenamiento debe
satisfacer dos requisitos. En primer lugar, debe ser capaz de permitir re-
cuperar las direcciones de retorno en orden inverso a su almacenamiento
—vya que es el orden en el que se van a producir los retornos—. En se-
gundo lugar, el espacio reservado para este cometido debe poder crecer
de forma dindmica —ya que la mayoria de las veces no se conoce cuantas
llamadas se van a producir, puesto que dicho nimero puede depender de
cuales sean los datos del problema—. Como ya se habra podido intuir,
la estructura de datos que mejor se adapta a los anteriores requisitos es
la pila. Si se utiliza la pila para almacenar y recuperar las direcciones de
retorno, bastara con proceder de la siguiente forma: 1) antes de realizar
una llamada a otra subrutina (o a si misma), la subrutina deberd apilar
la direccién de retorno actual, y 11) antes de retornar, debera desapilar la
ultima direccién de retorno apilada. Es decir, la subrutina debera apilar
el registro LR antes de llamar a otra subrutina y desapilar dicho regis-
tro antes de retornar. La Figura 7.4 muestra de forma esquematica qué
ocurre cuando si se gestiona de forma correcta la direccién de retorno.

> 7.6 Modifica el coédigo del ejercicio anterior para que la direccién de
retorno se apile y desapile de forma adecuada.

Como se ha visto en este apartado, el contenido del registro LR for-
mard parte de la informacién que se tiene que apilar en el bloque de
activacién de la subrutina en el caso de que se realicen llamadas anida-
das.

7.2.2. Variables locales de la subrutina

Para que una subrutina pueda realizar su cometido suele ser necesa-
rio utilizar variables propias a la subrutina. Dichas variables reciben el
nombre de variables locales puesto que solo existen en el contexto de la
subrutina. Por ello, suelen almacenarse bien en registros, bien en una zo-
na de memoria privada de la propia subrutina, en el bloque de activacion
de la subrutina. Para almacenar las variables locales de una subrutina
en el bloque de activacion se debe: 1) reservar espacio en el bloque de ac-
tivacién para almacenar dichas variables, y, antes de finalizar, 11) liberar
el espacio ocupado por dichas variables.

7.2. Bloque de activacién de una subrutina

159

main: S1: push {lr} S2: push {lr}

bl S1 # -->
r_main: ... bl S2 # --> bl S3 # -->
r_Si1: r_S2:

Pila Pila Pila
SP — r_Ssl1
SP — r_main r_main
SP —
(a) Llamada a S1 (b) Llamada a S2 (c) Llamada a S3
S3: s S2: . S1:
r_S2: 500 r_S1:
mov pc,lr # --> pop {pc} # --> pop {pc} # -->
LR [r_s2 LR [r_s1 LR
Pila Pila Pila
SP — r_S1 r_Ssi r_Ssi
r_main SP — r_main r_main
SP —
(d) Retorno de S3 (e) Retorno de S2 (f) Retorno de S1

Figura 7.4: Llamadas anidadas a subrutinas apilando las direcciones de
retorno. Las distintas subfiguras muestran distintos momentos en la eje-
cucion de un programa en ensamblador en el que desde el programa
principal se llama a una subrutina «S1», que a su vez llama a una su-
brutina «S2», que llama a una subrutina «S3». En cada subfigura se
indica el contenido del registro «LR» y el estado de la pila tras ejecutar
la Gltima instruccién mostrada. Como se puede ver, gracias al apilado
y desapilado de la direcciéon de retorno, es posible retornar al programa
principal correctamente.

7.2. Bloque de activacién de una subrutina

160

7.2.3. Almacenamiento de los registros utilizados por la
subrutina

Como se ha visto en el apartado anterior, la subrutina puede utilizar
registros como variables locales. En este caso, el contenido original de
dichos registros se sobreescribird durante la ejecucion de la subrutina.
Asi que si la informacion que contenian dichos registros era relevante
para que el programa invocador pueda continuar su ejecucion tras el
retorno, serd necesario almacenar temporalmente dicha informacién en
algin lugar. Este lugar sera el bloque de activacién de la subrutina. Con-
viene tener en cuenta, ademaés, que el convenio de paso de pardmetros
de ARM obliga a la subrutina a preservar todos aquellos registros de
proposito general salvo los registros del r@ al r3. Por lo tanto, si una
subrutina va a modificar el contenido del algin registro distinto a los
anteriores, deberd forzosamente preservar su valor.

La forma en la que se almacena y restaura el contenido de los re-
gistros cuyo contenido original debe preservarse es la siguiente: 1) la
subrutina, antes de modificar el contenido original de dichos registros,
los apila en el bloque de activacién; y I11) una vez finalizada la ejecucién
de la subrutina, y justo antes del retorno, recupera el contenido original.
Este planteamiento implica almacenar en primer lugar todos aquellos re-
gistros que vaya a modificar la subrutina, para posteriormente recuperar
sus valores originales antes de retornar al programa principal.

7.2.4. Estructura y gestion del bloque de activacion

Como se ha visto, el bloque de activacién de una subrutina esté loca-
lizado en memoria y se implementa por medio de una estructura de tipo
pila. El bloque de activacion visto hasta este momento se muestra en la
Figura 7.5. ;Cémo se accede a los datos contenidos en el bloque de acti-
vacion? La forma mas sencilla y eficiente para acceder a un dato que se
encuentra en el bloque de activacion es utilizando el modo indirecto con
desplazamiento. Como ya se sabe, en dicho modo de direccionamiento,
la direccién del operando se obtiene mediante la suma de una direccién
base y un desplazamiento. Como direccién base se podria utilizar el con-
tenido del puntero de pila, que apunta a la direccion de memoria mas
baja del bloque de activacién (véase de nuevo la Figura 7.5). El des-
plazamiento seria entonces la direccién relativa del dato con respecto al
puntero de pila. De esta forma, sumando el contenido del registro SP y
un determinado desplazamiento se obtendria la direcciéon de memoria de
cualquier dato que se encontrara en el bloque de activaciéon. Por ejem-
plo, si se ha apilado una palabra en la posicién 8 por encima del SP, se
podria leer su valor utilizando la instruccién «ldr r4, [sp, #8]».

7.2. Bloque de activacién de una subrutina

161

Direcciones
inferiores
sp —
Variables
locales
Registros
salvados
Parametro 5
Parametro 6
Direcciones
superiores

Figura 7.5: Esquema del bloque de activacion

7.2.5. Convenio para la llamada a subrutinas

Tanto el programa invocador como el invocado intervienen en la
creacién y gestion del bloque de activaciéon de una subrutina. La gestion
del bloque de activacién se produce principalmente en los siguientes
momentos:

s Justo antes de que el programa invocador pase el control a la
subrutina.

= En el momento en que la subrutina toma el control.

= Justo antes de que la subrutina devuelva el control al programa
invocador.

= En el momento en el que el programa invocador recupera el control.

A continuacion se describe con mas detalle qué es lo que debe reali-
zarse en cada uno de dichos momentos.

Justo antes de que el programa invocador pase el control a la
subrutina:

1. Paso de parametros. Cargar los pardmetros en los lugares estable-
cidos. Los cuatro primeros se cargan en registros, r@ a r3, y los
restantes se apilan en el bloque de activacién (p.e., los pardmetros
5y 6 de la Figura 7.5).

En el momento en que la subrutina toma el control:

1. Apilar en el bloque de activacién aquellos registros que vaya a
modificar la subrutina (incluido el registro LR en su caso).

7.2. Bloque de activacién de una subrutina 162

2. Reservar memoria en la pila para las variables locales de la su-
brutina. El tamafio se calcula en funcién del espacio en bytes que
ocupan las variables locales que se vayan a almacenar en el bloque
de activacion. Conviene tener en cuenta que el espacio reservado
debera estar alineado a 4.

Justo antes de que la subrutina devuelva el control al programa
invocador:

1. Cargar el valor (o valores) que deba devolver la subrutina en los
registros r@ a r3.

2. Liberar el espacio reservado para las variables locales.

3. Restaurar el valor original de los registros apilados por la subrutina
(incluido el registro LR, que se restaura sobre el registro PC).

En el momento en el que el programa invocador recupera el
control:

1. Eliminar del bloque de activacién los parametros que hubiera api-
lado.

2. Recoger los pardametros devueltos.

En la Figura 7.6 se muestra el estado de la pila después de que un
programa haya invocado a otro siguiendo los pasos que se han descrito.
En dicha figura se indica qué parte del bloque de activacién se ha creado
por el programa invocador y cudl por el invocado.

Direcciones
inferiores
sp —
Variables
locales
Invocado
Bloque de
) activacion
Registros
salvados
Pardmetro 5
- Invocador
Parametro 6
Direcciones
superiores

Figura 7.6: Estado de la pila después de una llamada a subrutina

© 0 N O Uk W NN =

e e e e o
0 N O ok W N = O

© 0 N O Ut W N =

e e e e o
0 N O U kA~ W N = O

7.2. Bloque de activacién de una subrutina 163

7.2.6. Ejemplo de uso del bloque de activaciéon

Como ejemplo de como se utiliza el bloque de activacion se propone
el siguiente programa en Python3. Dicho programa, dado un vector A
de dimension dim, sustituye cada elemento del vector por el sumatorio
de todos los elementos del vector a partir de dicho elemento inclusive,
es decir, a, = Z;th_l aj,Vi € [0, dim].
def sumatorios(A, dim):
B = [0]*dim
for i in range(dim):
B[i] = sumatorio(A[i:], dim-1i)

for i in range(dim):
A[i] = B[i]
return

def sumatorio(A, dim):
suma = 0;
for i in range(dim):
suma = suma + A[i]
return suma

A=1[6,5, 4, 3, 2, 1]
dim = 6
sumatorios(A, dim)

A continuacién se muestra el equivalente en ensamblador ARM del
anterior programa en Python3.

07_varlocal.s =

.data
A: .word 7, 6, 5, 4, 3, 2
dim: .word 6
text
@ __
@ Programa invocador
@ __
main: ldr ro, =A
ldr rl1, =dim
ldr rl, [rl]
bl sumatorios
fin: wfi
@ __

http://lorca.act.uji.es/libro/introARM2016/codigo/07_varlocal.s

19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
4(
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

7.2. Bloque de activacién de una subrutina

164

sumatorios:

forl:

finforl:

for2:

finfor2:

sumatorio:

for3:

@ cco I coc

push {r4, r5, r6, lr}
sub sp, sp, #32

add r4, sp, #0

str r@, [sp, #24]

str rl, [sp, #28]

mov r5, ro

mov r6, rl

cmp r6, #0

beq finforl
@ === 2 ==-
bl sumatorio
str r2, [r4]
@---3 ---

add r4, r4, #4
add r5, r5, #4
sub r6, r6, #1

mov r0@, r5

mov rl, r6
b forl
@---4---

ldr ro, [sp, #24]
ldr rl, [sp, #28]
add r4, sp, #0

cmp rl, #0

beq finfor2
ldr r5, [r4]
str r5, [r0]
add r4, rd, #4
add ro, ro, #4
sub rl1, rl1, #1

b for2

@ === 5 ===

add sp, sp, #32

pop {r4, r5, r6, pc}

push {r5, r6, r7, lr}

mov r2, #0
mov r6, rl
mov r5, ro
cmp r6, #0

beq finfor3
ldr r7, [r5]

67
68
69
70
71
72
73

7.3. Ejercicios

165

finfor3:

add r5, r5, #4
add r2, r2, r7
sub r6, r6, #1
b for3
pop {r5, r6, r7, pc}

.end

> 7.7 Copia el programa anterior en el simulador y contesta a las si-
guientes preguntas.

7.7.1

7.7.2

7.7.3

7.74

7.7.5
7.7.6

Localiza el fragmento de cédigo del programa ensamblador
donde se pasan los parametros a la subrutina «sumatorios».
Indica cuantos pardmetros se pasan, el lugar por donde se
pasan y el tipo de parametros.

Indica el contenido del registro LR una vez ejecutada la ins-
truccion «bl sumatorios».

Indica el fragmento de cédigo del programa ensamblador
donde se pasan los parametros a la subrutina «sumatorio».
Indica cuantos parametros se pasan, el lugar por donde se
pasan y el tipo de pardmetros.

Indica el contenido del registro LR una vez ejecutada la ins-
truccién «bl sumatorio».

Dibuja el bloque de activacién de la subrutina «sumatorio».

Una vez ejecutada la instruccién «pop {r5, ré6, r7, pc}» de
la subrutina «sumatorio» ;Ddnde se recupera el valor que
permite retornar a la subrutina «sumatorios»?

7.3. Ejercicios

Ejercicios de nivel medio

> 7.8 Dado el cédigo del programa anterior, subrutina-varlocal-v0.s,
contesta las siguientes cuestiones:

7.8.1

Dibuja y detalla (con los desplazamientos correspondientes)
el bloque de activacién creado por la subrutina «sumatorios».
Justifica el almacenamiento de cada uno de los datos que
contiene el bloque de activacion.

7.3. Ejercicios 166

7.8.2 Localiza el fragmento de cédigo donde se desapila el blo-
que de activacién de la subrutina «sumatorios». Explica qué
hacen las instrucciones que forman dicho fragmento.

7.8.3 ;Doénde se recupera el valor que permite retornar al progra-
ma principal?

Ejercicios avanzados

> 7.9 Desarrolla un programa en ensamblador que calcule el maximo
de un vector cuyos elementos se obtienen como la suma de los
elementos fila de una matriz de dimensiéon n x n. El programa
debe tener la siguiente estructura:

e Deberd estar compuesto por 3 subrutinas: «subrly», «subr2y
Yy «subr3».

e «subrly calculara el maximo buscado. Se le pasari como pa-
rametros la matriz, su dimensiéon y devolvera el maximo bus-
cado.

e «subr2» calculard la suma de los elementos de un vector. Se
le pasard como parametros un vector y su dimension y la
subrutina devolvera la suma de sus elementos.

e «subr3» calculard el maximo de los elementos de un vector.
Se le pasard como parametros un vector y su dimensién y
devolvera el maximo de dicho vector.

e El programa principal se encargara de realizar la inicializacién
de la dimensién de la matriz y de sus elementos y llamara a
la subrutina «subrily, quién devolverd el maximo buscado. El
programa principal deberd almacenar este dato en la direccion
etiquetada con «max».

Ejercicios adicionales

» 7.10 Desarrolla dos subrutinas en ensamblador: «subrl» y «subr2y.
La subrutina «subrl» tomard como entrada una matriz de enteros
de dimensién m xn y devolvera dicha matriz pero con los elementos
de cada una de sus filas invertidos. Para realizar la inversion de
cada una de las filas se deberd utilizar la subrutina «subr2y». Es
decir, la subrutina «subr2» debera tomar como entrada un vector
de enteros y devolver dicho vector con sus elementos invertidos.

(Pista: Si se apilan elementos en la pila y luego se desapilan, se
obtienen los mismos elementos pero en el orden inverso.)

7.3. Ejercicios

167

> 7.11 Desarrolla tres subrutinas en ensamblador, «subrl», «subr2» y

«subr3». La subrutina «subrl» devolvera un 1 si las dos cadenas
de caracteres que se le pasan como parametro contienen el mismo
nimero de los distintos caracteres que las componen. Es decir, de-
volverd un 1 si una cadena es un anagrama de la otra. Por ejemplo,
la cadena «ramo» es un anagrama de «moray.

La subrutina «subrl» utilizaréd las subrutinas «subr2y» y «subr3x.
La subrutina «subr2» debera calcular cuantos caracteres de cada
tipo tiene la cadena que se le pasa como parametro. Por otra lado,
la subrutina «subr3» devolvera un 1 si el contenido de los dos
vectores que se le pasa como pardmetros son iguales.

Suponer que las cadenas estan compuestas por el conjunto de letras
que componen el abecedario en minusculas.

» 7.12 Desarrolla en ensamblador la siguiente subrutina recursiva des-

B I e | B N B

crita en lenguaje Python3:

def ncsr(n, k):
if k > n:
return 0
elif n == k or k == 0:
return 1
else:
return ncsr(n-1, k) + ncsr(n-1, k-1)

Parte 111

Entrada/salida con Arduino

168

CArPiTULO

Introduccién a la Entrada/Salida

indice

8.1. Generalidades y problemadtica de la entrada/salida . 170

8.2. Estructura de los sistemas y dispositivos de entra-
dafsalida o 174

8.3. Ejercicios o 179

La entrada/salida es el componente de un ordenador que se encarga
de permitir su interaccién con el mundo exterior. Si un ordenador no
dispusiera de entrada/salida, serfa totalmente initil, con independencia
de la potencia de su procesador y la cantidad de memoria, pues no podria
realizar ninguna tarea que debiera manifestarse fuera de sus circuitos
electrénicos. De la misma forma que se justifica su necesidad, se explica
la variedad de la entrada/salida y de ahi su problemética: el mundo
exterior, lejos de ser de la misma naturaleza electrénica que los circuitos
del ordenador, se caracteriza por su variedad y rapida evolucién. La
entrada/salida debe ser capaz de relacionarse con este mundo diverso vy,
a la vez, con los dispositivos electrénicos del ordenador.

Los siguientes apartados explican cémo puede gestionarse esta re-
laciéon haciendo que la entrada/salida sea a la vez, versétil, eficaz y
manejable.

169

8.1. Generalidades y problemética de la entrada/salida

170

8.1. Generalidades y problematica de la
entrada/salida

La primera imagen que se nos viene a la cabeza al pensar en un
sistema informatico es el ordenador personal, con un teclado y un ratén
para interactuar con él y un monitor para recibir las respuestas de for-
ma visual. Posiblemente tengamos en el mismo equipo unos altavoces
para reproducir audio, una impresora para generar copias de nuestros
trabajos, un disco duro externo y, por supuesto, una conexion a internet
—aunque pueda no verse al no utilizar cables—. Todos estos elementos
enumerados, aunque sean de naturaleza y funcién completamente distin-
ta, se consideran dispositivos periféricos del ordenador y son una parte
—en algunos casos la mas alejada del ordenador, como los altavoces— de
su entrada/salida.

8.1.1. Caracteristicas cualitativas de los dispositivos de
entrada/salida

Considerando la direccién, siempre referida al ordenador, en que flu-
yen los datos, vemos que unos son de salida, como la impresora o el
monitor, otros de entrada, como el teclado y el ratén, mientras que al-
gunos son de entrada y de salida, como el disco duro y la conexién de
red. La direccién de los datos se denomina comportamiento y es una
caracteristica propia de cada dispositivo. Podemos ver ademés que los
dos ultimos dispositivos del parrafo anterior no sirven para comunicarse
con el usuario —un ser humano— a diferencia del teclado, ratén o mo-
nitor. Esto nos permite identificar otra caracteristica de los dispositivos,
que es su interlocutor, entendido como el ente que recibe o genera los
datos que el dispositivo comunica con el ordenador. Entre los ejemplos
anteriores es evidente determinar cuales tienen un interlocutor humano.
En el caso de la conexion de red, el interlocutor, a través de numerosos
dispositivos intermedios —que normalmente también son pequenos or-
denadores— acaba siendo otro ordenador personal o un servidor. En este
ejemplo el interlocutor es una méaquina, como ocurre también con otros
muchos ordenadores presentes en sistemas empotrados que se comuni-
can con controladores de motores, sistemas de regulacion de iluminacion
u otra maquinaria generalmente electrénica o eléctrica. Pero hoy en dia
que los ordenadores estan extendidos en todos los campos de la acti-
vidad humana, podemos tener uno regulando la temperatura de una
caldera de vapor —con sensores midiendo la temperatura del aire en su
interior—, midiendo la humedad del terreno en un campo de cultivo o
el nivel de concentracién de cierto soluto en una reaccién quimica. En
estos ultimos ejemplos el interlocutor no es un ser humano ni una ma-
quina, sino un sistema o fenémeno natural —dado que la entrada/salida

8.1. Generalidades y problemética de la entrada/salida

171

comunica el ordenador con el mundo exterior—. Esta clasificacion de in-
terlocutores no pretende ser un dogma ni estd exenta de consideraciones
filoséficas. Segun ella es evidente que una interfaz de un computador con
las terminaciones nerviosas de un ratén en un experimento de bioinge-
nieria no tiene interlocutor humano, pero ;qué diriamos entonces si las
terminaciones nerviosas fueran de una persona?

En resumen, las caracteristicas no medibles de los dispositivos
de entrada/salida son:

= Su comportamiento, que indica si el dispositivo es de entrada, de
salida o bidireccional.

= Su interlocutor, que hace referencia al ente —ser humano, maquina
u otros— con el que interactia el dispositivo para intercambiar la
informacién entre él y el ordenador.

8.1.2. Caracteristicas temporales de los dispositivos de
entrada/salida

En el apartado anterior hemos vuelto a comentar que la entrada /sali-
da pone en contacto el ordenador con el mundo exterior. Esta afirmacién
no parece confirmarse cuando hablamos de un disco duro. Obviando el
ejemplo del que hemos partido, el caso del disco externo, un disco duro
es interno al ordenador y parte imprescindible de él, al menos para los
ordenadores personales. Sin embargo, dado que el disco duro magnético
basa su funcionamiento en piezas mecanicas en movimiento, participa
de todas las demés caracteristicas de los dispositivos de entrada/salida
y por ello se considera como tal. Y una de estas caracteristicas, especial-
mente importante en los discos duros, es la tasa de transferencia de
datos, es decir, la cantidad de datos por unidad de tiempo que intercam-
bian ordenador y dispositivo. Esta tasa de transferencia influye mucho
en la forma de gestionar la entrada/salida, adaptando a ella la forma de
tratar cada dispositivo. Un teclado puede comunicar unos pocos bytes
por segundo; un disco duro puede alcanzar varios gigabytes por segundo.
Aunque todos los periféricos son lentos en relacién con la velocidad del
procesador —que puede tratar decenas de miles de millones de bytes por
segundo— la propia diferencia de velocidades entre dispositivos requiere
tratamientos bien diferenciados.

Ademads, la tasa de transferencia, considerada sin maés, no describe
correctamente el comportamiento temporal de los dispositivos, pudiendo
ser medida de distintas formas, todas ellas correctas aunque no igual-
mente significativas. Veamos un par de ejemplos que permiten caracteri-
zar mejor la tasa de transferencia. Comparando la reproduccién de una

8.1. Generalidades y problemética de la entrada/salida

172

pelicula en alta definicién almacenada en un disco duro con la pulsacién
de un teclado, es evidente que la primera actividad requiere mayor ta-
sa de transferencia. Sin embargo, nuestra experiencia al disfrutar de la
pelicula no se verd mermada si, desde que ejecutamos el programa de
reproduccion hasta que aparecen las primeras imégenes transcurren diez
o quince segundos. Seria imposible, por otra parte, trabajar con un orde-
nador si cada vez que pulsamos una tecla transcurrieran varios segundos
—no ya diez, simplemente uno o dos— hasta que dicha pulsacién se hace
evidente en la respuesta del sistema. Estos ejemplos revelan los dos fac-
tores que caracterizan el comportamiento temporal de los dispositivos
de entrada/salida:

s La latencia, que se entiende como el tiempo transcurrido desde
que se inicia una operacién de entrada/salida hasta que el primer
dato comunicado llega a su destino. En una operacién de entrada
seria el tiempo transcurrido desde que se inicia la peticion de datos
hasta que se recibe el primero de ellos. Un teclado, con una baja
tasa de transferencia, requiere sin embargo una latencia de decenas
de milisegundos para funcionar adecuadamente.

= La productividad, que se refiere a la cantidad de datos transferi-
dos por unidad de tiempo, y que coincide con la primera definicién
que hemos dado de tasa de transferencia.

Al indicar un valor para la productividad se debe especificar adecua-
damente como se ha realizado el célculo. Teniendo en cuenta estas dos
definiciones, la medida correcta de la productividad de una transaccién
deberia incluir el tiempo de latencia, aunque durante él no se transmi-
tan datos. En este caso la productividad vendria dada por la cantidad
de datos recibidos dividida entre el tiempo transcurrido desde que se
inici6 la transacciéon hasta que concluyé la recepciéon de datos. Si lo
que se analiza es un dispositivo y no una transaccién en particular, lo
mas ecuanime es dar una productividad media, teniendo en cuenta los
tiempos de latencia y de transaccién. Muchas veces se da, sin embargo,
sobre todo en informacién comercial —orientada a demostrar correcta
o incorrectamente las bondades de cierto producto—, la productividad
maxima, que no tiene en cuenta el tiempo de latencia y considera el
mejor caso posible para el funcionamiento del dispositivo.

Ejemplo: Un procesador realiza una peticién de un bloque de datos
de 448 bytes a un dispositivo. 20 ms después comienza a recibir un pri-
mer bloque de 64 bytes, que tarda 2 ms en recibirse completamente.
Después de este bloque se van recibiendo otros, con idénticas caracteris-
ticas, con un lapso de 5 ms desde el final de un bloque hasta el principio

8.1. Generalidades y problemética de la entrada/salida

173

del siguiente, hasta completar la recepcion de todos los datos. jCudles
serian, para estos datos, la latencia del acceso, la tasa de transferencia
maxima y la productividad total?

Solucién: La latencia, medida como el tiempo transcurrido desde que
se inicia la operacién hasta que se comienzan a recibir los datos, es de
20 ms. La tasa de transferencia méxima podemos calcularla sabiendo que
cada bloque de 64 bytes se recibe en 2 ms, por lo que es de 32000 B/s,
0 256000 b/s. La productividad se calcula dividiendo el total de datos
transferidos entre la duracion del acceso. Para calcular el tiempo hemos
de tener en cuenta:

= que el primero de los bloques tarda 20 ms en llegar;
» que se reciben 7 bloques (448/64 = 7), en 2 ms cada uno de ellos;

» y que entre bloque y bloque transcurren 5 ms (seis veces, por
tanto).

Asi pues el tiempo total es de:
204+ 7*24+6*5=064ms
Como se reciben 448 bytes, la productividad es de:
448 B/64 ms = 7000 B/s, o 56000 b/s

En este apartado hemos presentado algunas generalidades de los dis-
positivos y sistemas de entrada/salida y hemos presentado tres propie-
dades que ayudan a su clasificaciéon: su comportamiento, el interlocutor
al que se aplican y la tasa de transferencia, matizada con los conceptos
de latencia y productividad. Los sistemas de entrada/salida actuales son
elevadamente complejos e incluso, por decirlo de alguna manera, jerar-
quicos. Estamos acostumbrados a utilizar dispositivos periféricos USB
como los que hemos estado comentando —teclados, ratones, impresoras,
etcétera—. Pues bien, el bus de entrada/salida USB —al igual que los
SPI, I2C y CAN, utilizados en sistemas empotrados— es a su vez un
dispositivo periférico del ordenador, y debe ser tratado como tal. Una
tarjeta de sonido conectada al bus PCI Express de un PC es un disposi-
tivo periférico conectado directamente al sistema; una tarjeta igual —en
su mayor parte— conectada a un bus USB es un dispositivo periférico
conectado a un dispositivo de entrada/salida conectado al sistema. El
tratamiento de ambas es idéntico en muchos aspectos, pero diferente en
otros. Afortunadamente los sistemas operativos, a través de sus maneja-
dores de dispositivos, estructurados de forma modular y jerarquica, son

8.2. Estructura de los sistemas y dispositivos de entrada/salida

174

capaces de gestionar eficazmente esta complejidad. En este libro, en los
siguientes capitulos, nos limitaremos a presentar los conceptos basicos
de la estructura y la gestién de la entrada/salida, desde el punto de vista
de la estructura de los computadores.

8.2. Estructura de los sistemas y dispositivos
de entrada/salida

La funcién de la entrada/salida, como sabemos, es comunicar el or-
denador con el mundo exterior. Si a esta afirmacién unimos lo tratado
en el apartado anterior, especialmente al hablar de los diferentes inter-
locutores de los dispositivos de entrada/salida, y la propia experiencia
acerca de los incontables usos de los ordenadores en la vida actual, es
facil intuir que la estructura fisica de los elementos de entrada/salida
es complicada e incluye diversas tecnologias. Por otra parte, segtin el
elemento del mundo al que esté conectado un dispositivo, su velocidad
de funcionamiento puede ser tan lenta como la conmutacion de las lu-
ces de un seméaforo o tan rapida como para enviar 60 imagenes de alta
resoluciéon por segundo a un monitor. Pese a esta diversidad extrema
se pueden extraer generalizaciones comunes a todos los dispositivos, que
comprenden tanto su estructura fisica como la forma de relacionarse con
el resto del ordenador. En los siguientes subapartados vamos a describir
ambas estructuras.

8.2.1. Estructura fisica de los dispositivos de
entrada/salida

Como parte constituyente del mismo, todo dispositivo acaba relacio-
nandose con el ordenador, por lo que dispone de circuitos electrénicos
digitales de la misma tecnologia. En el otro extremo, el dispositivo es
capaz de generar luz, mover una rueda, medir la salinidad del agua o re-
gistrar los desplazamientos producidos en una palanca. Buena parte de
esta estructura, pero no toda, es electronica. Es sin embargo posible en-
contrar una estructura general a la que, como siempre con excepciones,
se adaptan de una u otra forma todos los dispositivos de entrada/sali-
da. Esta configuracién incluye tres tipos de tecnologia, que enumeradas
desde el ordenador hacia el exterior serfan las siguientes (véase la Figu-
ra 8.1):

s Una parte formada por circuitos electronicos digitales que comuni-
ca el dispositivo con el ordenador. Es la parte mas genérica, propia
del sistema informatico y no de los diversos elementos del mundo
exterior. Esta parte incluye todo lo necesario para la gestién de la

8.2. Estructura de los sistemas y dispositivos de entrada/salida

175

entrada/salida en el ordenador, que iremos describiendo a lo largo
de este documento.

= Una parte compuesta por circuitos electronicos analdgicos, que sue-
le terminar en uno o varios componentes llamados transductores
que transforman energia eléctrica en otro tipo de energia, o vice-
versa. Esta parte se encarga de la adaptacién de los niveles eléctri-
cos necesarios para comunicarse con el transductor, y de posibles
tratamientos electronicos de las senales —filtrados, amplificacion,
etcétera—.

= Una parte con componentes de una o varias tecnologias no eléctri-
cas que comienza con los transductores y los adapta, en el ambito
de las magnitudes y caracteristicas fisicas propias del dispositivo.

Ordenador

Mundo exterior

Dispositivo de entrada/salida Procesador

duct Electrénica Electronica
agsauctor analogica digital
D Memoria

principal

—-

Figura 8.1: Estructura de un dispositivo de entrada/salida

En un ejemplo tan sencillo como un LED utilizado como dispositi-
vo de salida, tenemos que la parte no eléctrica la constituye el propio
encapsulado del diodo, con su color —o capacidad de difusién de la luz
para un LED RGB— y su efecto de lente. Como vemos, ambas carac-
teristicas son Opticas. La parte eléctrica estaria formada por el propio
diodo semiconductor, que es en este caso el transductor, y la resistencia
de polarizacién. La electronica digital se encontraria en los circuitos de
salida de propoésito general —GPIO, como veremos méas adelante— del
microcontrolador al que conectamos el LED.

En el caso de un teclado comenzariamos con las partes mecanicas de
las teclas —incluyendo resortes y membranas, segiin el tipo— y los con-
tactos eléctricos que completan los transductores. La electrénica analé-
gica estaria formada por resistencias para adaptar los niveles eléctricos
y diodos para evitar corrientes inversas. La parte digital, en los teclados

8.2. Estructura de los sistemas y dispositivos de entrada/salida

176

mas corrientes, la forma un microcontrolador que gestiona el teclado y
encapsula la informacién de las teclas pulsadas en un formato estandari-
zado que se envia a través de un bus de entrada/salida estdndar —USB
hoy en dia; antes PS/2 o el bus de teclado de los primeros PC—.

8.2.2. Arquitectura de los controladores de dispositivos

Si bien las tres partes mencionadas son necesarias en el funciona-
miento del dispositivo, la gestién de la entrada/salida desde el orde-
nador requiere solo la primera, implementada con electréonica digital y
compatible por tanto con el funcionamiento del resto de componentes
del computador. Esto permite ademas que la estructura a grandes rasgos
de este bloque sea comin a todos los dispositivos y su funcionamiento, el
propio de los circuitos digitales. Por ello es posible generalizar la gestiéon
de la entrada/salida, al igual que los comportamientos del procesador y
las memorias se adaptan a unas lineas generales bien conocidas. Vamos
a ver ahora con detalle la estructura genérica, a nivel l6gico o funcional
—mno a nivel estructural o de componentes fisicos— de la parte digital
de los dispositivos de entrada/salida. En apartados posteriores describi-
remos las distintas formas de gestionarla.

La parte de los dispositivos de entrada/salida comun a la tecnologia
electronica digital del ordenador y que permite relacionarlo con uno o
varios periféricos recibe el nombre de controlador de entrada/salida.
El controlador oculta al procesador las especificidades y la dificultad
de tratar con el resto de componentes del periférico y le proporciona
una forma de intercambio de informacién, una interfaz, genérica. Esta
generalidad, como se ha dicho, tiene rasgos comunes para todos los tipos
de dispositivos pero ademds tiene rasgos especificos para cada tipo que
dependen de sus caracteristicas. Por ejemplo, un controlador de disco
duro se adapta a una especificacion comun para los controladores —el
estandar IDE-ATA, por ejemplo— con independencia de la tecnologia
de fabricacién y aspectos especificos de un modelo de disco en concreto,
y estandariza la forma de tratar el disco duro mediante los programas
ejecutados por el procesador.

Para realizar la comunicacion entre el procesador y el dispositivo,
a través del controlador, existen un conjunto de espacios de almacena-
miento, normalmente registros —también conocidos como puertos— a
los que puede acceder el procesador que se clasifican, segin su funcion,
en tres tipos:

= Registros de control, que se utilizan para que el procesador
configure parametros en el dispositivo o le indique las operaciones
de entrada/salida que debe realizar. Son registros en los que puede
escribir el procesador, pero no el dispositivo.

8.2. Estructura de los sistemas y dispositivos de entrada/salida

177

s Registros de estado, que permiten al dispositivo mantener in-
formacién acerca de su estado y del estado de las operaciones de
entrada/salida que va realizando. Son registros que escribe el dis-
positivo y puede leer el procesador.

= Registros de datos, que sirven para realizar el intercambio de
datos entre el procesador y el dispositivo en las operaciones de
entrada/salida. En el caso de salida, el procesador escribira los
datos que el periférico se encargara de llevar al mundo exterior.
En el caso de entrada, el periférico escribird los datos en estos
registros, que de este modo serdan accesibles para el procesador
mediante lecturas.

Veamos un ejemplo de uso de estos registros a la hora de que el
procesador se comunique con una impresora, a través de su controlador,
para imprimir cierto documento. Aunque en realidad las cosas no suce-
dan exactamente de esta manera, por la estandarizacién de los formatos
de documentos y gestién de impresoras, el ejemplo es suficientemente
ilustrativo y valido. En primer lugar, el procesador configuraria en la
impresora, a través de registros de control, el tamafio de papel, la re-
solucién de la impresién y el uso o no de colores. Una vez realizada la
configuracién, el procesador iria enviando los datos a imprimir a través
de los registros de datos, y al mismo tiempo estaria consultando los re-
gistros de estado, ya sea para detectar posibles errores —falta de papel
o de tinta, atascos de papel—, ya sea para saber cuidndo la impresora
no acepta mas datos —recordemos que el procesador es mucho mas ra-
pido— o ha terminado de imprimir la pagina en curso. Al acabar todas
las paginas del documento, el procesador posiblemente avisaria a la im-
presora de tal circunstancia, mediante un registro de control, y aquella
podria pasar a un modo de espera con menor consumo.

Aunque la clasificacién de los registros y sus caracteristicas, tal y
como se han presentado, son correctas desde un punto de vista tedrico,
es frecuente que en los controladores reales, para simplificar los circuitos
y la gestion, se mezcle informacién de control y estado en un mismo
registro légico —es decir, un tnico registro desde el punto de vista del
procesador— e incluso que un bit tenga doble uso, de control y esta-
do, segtin el momento. Un ejemplo comuin en los conversores analégico-
digitales es disponer de un bit de control que escribe el procesador para
iniciar la conversién —poniéndolo a 1, por ejemplo— y que el dispositivo
cambia de valor —a 0 en este ejemplo— cuando ha terminado —tipica
informacién de estado— y el resultado esta disponible en un registro de
datos.

8.2. Estructura de los sistemas y dispositivos de entrada/salida

178

8.2.3. Acceso a los registros de los controladores

Como se ha visto, cuando el procesador quiere realizar una deter-
minada operacién de entrada/salida debe leer o escribir en los registros
del controlador. Por lo tanto, estos registros deben ser accesibles por el
procesador a través de su conjunto de instrucciones. Este acceso puede
realizarse de dos formas:

» Los registros de entrada/salida pueden formar parte del espacio
de direcciones de memoria del ordenador. En este caso se dice
que el sistema de entrada/salida estd mapeado en memoria. El
procesador lee y escribe en los registros de los controladores de la
misma forma y mediante las mismas instrucciones con que lo hace
de la memoria. Este esquema es el utilizado por la arquitectura
ARM.

» Los registros de entrada/salida se ubican en un mapa de direccio-
nes propio, independiente del mapa de memoria del sistema. En
este caso se dice que el mapa de entrada/salida es independiente
o aislado. El procesador debe disponer de instrucciones especiales
para acceder a los registros de entrada/salida. La ejecuciéon de es-
tas instrucciones se refleja en los circuitos externos del procesador,
lo que permite al sistema distinguir estos accesos de los accesos a
memoria y usar por tanto mapas distintos. Esta modalidad es uti-
lizada por la arquitectura Intel de 32 y 64 bits, con instrucciones
especificas tipo in y out.

Es necesario indicar que un procesador que dispone de instrucciones
especiales de entrada/salida puede sin embargo utilizar un esquema ma-
peado en memoria, e incluso ambos. No es de extrafiar por ello que el
mapa del bus PCI Express y los dispositivos en un ordenador tipo PC
incluyan regiones en memoria y otras en mapa especifico de entrada/sa-
lida.

En este apartado hemos visto la estructura de los dispositivos de
entrada/salida, que normalmente incluye un bloque de tecnologia espe-
cifica para interactuar con el mundo exterior, otro electrénico analégico
que se relaciona con el anterior mediante transductores, y un bloque
de electromica digital, de la misma naturaleza que el resto de circuitos
del ordenador. Este ultimo bloque se llama controlador del dispositivo y
facilita que el procesador se comunique con aquél mediante registros de
control para enviar érdenes y configuraciones, registros de estado para
comprobar el resultado de las operaciones y los posibles errores, y regis-
tros de datos para intercambiar informacion. Estos registros pueden ser
accesibles en el mapa de memoria del procesador, mediante instruccio-
nes de acceso a memoria, o en un mapa especifico de entrada/salida que

8.3. Ejercicios

179

solo puede darse si el procesador incorpora instrucciones especiales. En
los siguientes capitulos se vera como se usan todos estos registros para
relacionar el procesador con los diferentes dispositivos.

8.3. Ejercicios

> 8.1 Indica las caracteristicas de los dispositivos de la siguiente lista.
Para la latencia puedes dar un valor cualitativo como alta, baja
o media; para la tasa de transferencia basta con una estimacion
razonable. Busca informacién sobre aquéllos que no conozcas.
8.1.1 Una pantalla tactil de 1024 x 768 pixeles.
8.1.2 Un mando (gamepad) de videojuegos.
8.1.3 Un sensor de posiciéon de 3 ejes.

8.1.4 Un controlador de bus SMB.
8.1.5 Una tableta digitalizadora.

> 8.2 Busca informacién acerca de los dispositivos que aparecen en la
siguiente lista e indica para cada uno de ellos la estructura y la
funcién de su parte electrénica analégica y el transductor que uti-
liza.

8.2.1 El bloque dispensador de plastico de una impresora 3D.
8.2.2 Una impresora de chorro de tinta.

8.2.3 Un lector de huellas dactilares.

8.2.4 Un monitor TFT.

8.2.5 Un mono para captura de movimiento.

> 8.3 En el Apéndice A se encuentra la informacién técnica de algu-
nos dispositivos del microcontrolador ATSAM3XSE de la tarjeta
Arduino Due que se usard en las practicas. Constltala e indica, pa-
ra los siguientes dispositivos, los bits o grupos de bits de control,
estado o datos de sus registros.

8.3.1 Temporizador (System Timer).

8.3.2 Reloj en tiempo real (RTC).
8.3.3 Temporizador de tiempo real (Real-Time Timer RTT).

> 8.4 El conversor digital analégico MCP4822 convierte un valor digital
de 12 bits en un voltaje analégico entre 0 y 2048 mV o 4096 mV,
segin se haya configurado. Los valores a convertir se le envian
a través de un bus SPI con una velocidad méaxima de 20 Mbps,

8.3. Ejercicios 180

mediante dos envios de 16 bits, de los que solo utiliza los 12 menos
significativos. Indica la productividad méxima, referida a los datos
utiles, de este dispositivo.

> 8.5 Se ha disenado un sistema de vigilancia de bajo consumo eléctrico
para enviar imégenes de 1024 x 768 pixeles y 24 bpp. Dicho siste-
ma se encuentra normalmente en modo de bajo consumo, pasando
cada 20 segundos a modo activo. En este modo, si hay alguna pe-
ticién pendiente, adquiere una imagen, lo que le cuesta 25 ms, y
la envia a razén de 200 kbps. Indica las latencias méaxima, prome-
dio y minima del sistema, asi como su productividad maxima y
promedio.

CArPiTULO

Dispositivos de Entrada/Salida

Indice
9.1. Entrada/salida de propdsito general (GPIO - Ge-
neral Purpose Input Output) 182
9.2. Gestion del tiempoo oL 191
9.3. El entorno Arduino 195
9.4. Creacién de proyectos 202
9.5. Ejercicios oo 207

En el capitulo anterior se presentd la problematica y caracteristicas
de la entrada/salida en los ordenadores, asi como la estructura tanto
fisica como légica de los dispositivos. El siguiente paso para estudiar los
sistemas de entrada/salida es conocer los detalles de algunos de estos
dispositivos y disponer de un entorno para poder realizar programas
que interactiien con ellos. En este capitulo se van a describir las ge-
neralidades de los dos grupos de dispositivos méas cominmente usados:
la entrada/salida de propédsito general y los dispositivos de gestion del
tiempo. Todos los sistemas incluyen y utilizan estos tipos de dispositivos,
que son fundamentales en los sistemas empotrados y en los microcon-
troladores. Para poder trabajar con aplicaciones reales, este capitulo
también describe el entorno de desarrollo que se va a utilizar para rea-
lizar programas de entrada/salida: la tarjeta Arduino Due y su entorno
de desarrollo, junto con una sencilla tarjeta de expansién que anade al
sistema un LED RGB y un pulsador.

181

gl W N

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output)

9.1. Entrada/salida de propdésito general
(GPIO - General Purpose Input Output)

La forma més sencilla de entrada/salida que podemos encontrar en
un procesador son sus propios pines de conexién eléctrica con el exterior.
Si la organizacion del procesador permite relacionar direcciones del mapa
de memoria o de entrada salida con algunos pines, la escritura de un 1 o
0 légicos por parte de un programa —arquitectura— en esas direcciones
se reflejard en cierta tensién eléctrica en el pin, normalmente OV para el
nivel bajo y 5 o 3,3V para el alto, que puede ser utilizada para activar
o desactivar algin dispositivo externo. Por ejemplo, esto nos permitiria
encender o apagar un LED mediante instrucciones de nuestro programa.
De modo analogo, en el caso de las entradas, si el valor eléctrico presente
en el pin se ve traducido por el diseno eléctrico del circuito en un 1
0 0 légico que se puede leer en una direccién del sistema, podremos
detectar cambios en el exterior de nuestro procesador. De esta manera,
por ejemplo, nuestro programa podra consultar si un pulsador esta libre
u oprimido, y tomar decisiones en funcién de su estado.

Vedmoslo en un sencillo ejemplo:

09_entrada_salida.s &

ldr r0@, [r7, #PULSADOR] @ Leemos el nivel
cmp ro, #1 @ Si no estd pulsado
bne sigue @ seguimos

mov ro, #1 @ Escribimos 1 para
str r@, [r7, #LED] @ encender el LED

El fragmento de cédigo anterior supuestamente enciende un LED es-
cribiendo un 1 en la direccién «r7 + LED» si el pulsador esté presionado,
es decir, cuando lee un 1 en la direcciéon «r7 + PULSADOR». Es un ejemplo
figurado que simplifica el caso real. El apartado siguiente profundiza en
la descripcién de la GPIO (General Purpose Input/Ouput en inglés) y
describe con méas detalle sus caracteristicas en los sistemas reales.

9.1.1. La GPIO en la E/S de los sistemas

La GPIO (General Purpose Input Output) es tan 1til y necesaria
que estd presente en todos los sistemas informéticos. Los PC actuales
la utilizan para leer pulsadores o encender algtin LED del chasis. Por
otra parte, en los microcontroladores, sistemas completos en un chip, la
GPIO tiene més importancia y muestra su mayor complejidad y poten-
cia. Vamos a analizar a continuacién los aspectos e implicaciones de la
GPIO y su uso en estos sistemas.

http://lorca.act.uji.es/libro/introARM2016/codigo/09_entrada_salida.s

© 0 N O Uk W N =

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output)

Aspectos légicos y fisicos de la GPIO o Programacién y
electrénica de la GPIO

En el ejemplo que hemos visto antes se trabajaba exclusivamente con
un bit, que se corresponde con un pin del circuito integrado, tanto en
entrada como en salida, utilizando instrucciones de acceso a una palabra
de memoria, 32 bits en la arquitectura ARM. En la mayor parte de los
sistemas, los diversos pines de entrada/salida se agrupan en palabras,
de tal forma que cada acceso como los del ejemplo afectaria a todos
los pines asociados a la palabra a cuya direccién se accede. De esta
manera, se habla de puertos refiriéndose a cada una de las direcciones
asociadas a conjuntos de pines en el exterior del circuito, y cada pin
individual es un bit del puerto. Asi por ejemplo, si hablamos de PB12
—en el microcontrolador ATSAM3X8E— nos estamos refiriendo al bit
12 del puerto de salida llamado PB —que fisicamente se corresponde
con el pin 86 del encapsulado LQFP del microcontrolador, algo que es
necesario saber para disenar el hardware del sistema—. En este caso,
para actuar —modificar o comprobar su valor— sobre bits individuales
o sobre conjuntos de bits es necesario utilizar méascaras y operaciones
logicas para no afectar a otros pines del mismo puerto. Suponiendo que
el LED se encuentra en el bit 12 y el pulsador en el bit 20 del citado
puerto PB, una versién mas verosimil del ejemplo propuesto seria:

09_acceso_es.s =

ldr r7, =PB @ Direccién del puerto

dr ré, =0x00100000 @ Mascara para el bit 20

ldr ro, [r7] @ Leemos el puerto

ands ro, ré @ y verificamos el bit

beq sigue @ Seguimos si esta a 0

ldr ré, =0x00001000 @ Mascara para el bit 12

dr ro, [r7] @ Leemos el puerto

orr ro, ré6 @ ponemos a 1 el bit

str ro, [r7] @ y lo escribimos en el puerto

En este caso, en primer lugar se accede a la direccién del puerto PB
para leer el estado de todos los bits y, mediante una méscara y la ope-
racién logica AND, se verifica si el bit correspondiente al pulsador —bit
20— estd a 1. En caso afirmativo —cuando el resultado de AND no es
cero— se lee de nuevo PB y mediante una operacién OR y la méascara
correspondiente se pone a 1 el bit 12, correspondiente al LED para en-
cenderlo. La operacién OR permite, en este caso, poner a 1 un bit sin
modificar los demés. Aunque este ejemplo es més cercano a la realidad y
seria vdlido para muchos microcontroladores, el caso del ATSAM3XS8E
es algo mas complejo, como se vera en su momento.

Obviando esta complejidad, el ejemplo que se acaba de presentar es
valido para mostrar la gestiéon por programa de la entrada y salida tipo

http://lorca.act.uji.es/libro/introARM2016/codigo/09_acceso_es.s

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output) 184

GPIO. Sin embargo, es necesario que nos surja alguna duda al considerar
—no lo olvidemos— que los pines se relacionan realmente con el exterior
mediante magnitudes eléctricas. Efectivamente, el comportamiento eléc-
trico de un pin que funciona como entrada es totalmente distinto al de
otro que se utiliza como salida, como veremos mas adelante. Para resol-
ver esta paradoja volvemos a hacer hincapié en que el ejemplo que se ha
comentado es de gestién de la entrada/salida durante el funcionamiento
del sistema, pero no se ha querido comentar, hasta ahora, que previa-
mente hace falta una configuracion de los puertos de la GPIO en que se
indique qué pines van a actuar como entrada y cudles como salida. Asi
pues, asociado a la direccién en la que se leen o escriben los datos y que
hemos llamado PB en el ejemplo, habra al menos otra que corresponda
a un registro de control de la GPIO en la que se indique qué pines se
comportan como entradas y cudles como salidas, lo que se conoce como
direccion de los pines. Consideremos de nuevo el hecho diferencial de uti-
lizar un pin —y su correspondiente bit en un puerto— como entrada o
como salida. En el primer caso son los circuitos exteriores al procesador
los que determinan la tension presente en el pin, y la variacion de ésta no
depende del programa, ni en valor ni en tiempo. Sin embargo, cuando el
pin se usa como salida, es el procesador ejecutando instrucciones de un
programa el que modifica la tension presente en el pin al escribir en su
bit asociado. Se espera ademéas —pensemos en el LED encendido— que
el valor se mantenga en el pin hasta que el programa decida cambiarlo
escribiendo en él otro valor. Si analizamos ambos casos desde el punto
de vista de necesidad de almacenamiento de informacién, veremos que
en el caso de la entrada nos limitamos a leer un valor eléctrico en cier-
to instante, valor que ademads viene establecido desde fuera y no por el
programa ni el procesador, mientras que en la salida es necesario asociar
a cada pin un espacio de almacenamiento para que el 1 o 0 escrito por
el programa se mantenga hasta que decidamos cambiarlo, de nuevo de
acuerdo con el programa. Esto muestra por qué la GPIO a veces utiliza
dos puertos, con direcciones distintas, para leer o escribir en los pines del
sistema. El registro —o latch— que se asocia a las salidas suele tener una
direccién y las entradas —que no requieren registro pues leen el valor
l6gico fijado externamente en el pin— otra. Asi, en el caso méds comun,
un puerto GPIO ocupa al menos tres direcciones en el mapa: una para
el registro de control que configura la direcciéon de los pines, otra para
el registro de datos de salida y otra para leer directamente los pines a
través del registro de datos de entrada. En la Figura 9.1 (obtenida del
manual [Atm11]) se muestra la estructura interna de un pin de E/S de
un microcontrolador de la familia Atmel AVR.

En este caso, que como hemos dicho es muy comun, ;qué ocurre si
escribimos en un pin configurado como entrada, o si leemos un pin confi-
gurado como salida? Esto depende en gran medida del disefio electrénico

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output)

185

ﬂ Tk PUD

Pxn

/
El § o
jr] V—‘
F N
5
DATA BUS

p——— SLEEP F RRx
L~

SYNCHRONIZER

Figura 9.1: Estructura interna de un pin de E/S de un microcontrolador
de la familia Atmel AVR

de los circuitos de E/S del microcontrolador, pero en muchos casos el
comportamiento es el siguiente: si leemos un pin configurado como salida
podemos leer bien el valor almacenado en el registro, bien el valor pre-
sente en el pin. Ambos deberian coincidir a nivel l6gico, salvo que algin
error en el disefio del circuito o alguna averia produjeran lo contrario.
Por ejemplo, en un pin conectado a masa es imposible que se mantenga
un 1 légico. Por otra parte, si escribimos en un pin configurado como
entrada es comin que, en realidad, se escriba en el registro de salida, sin
modificar el valor en el pin. Este comportamiento es ttil, dado que per-
mite fijar un valor l6gico conocido en un pin, antes de configurarlo como
salida. Dado que las entradas son eléctricamente més seguras, los pines
suelen estar configurados como tales tras el reinicio del sistema. Asi, el
procedimiento normal para inicializar un pin de salida es escribir su va-
lor mientras estd configurado como entrada, y luego configurarlo como
salida. Esto permite ademas fijar valores légicos en el exterior mediante
resistencias, que si son de valor elevado permitiran posteriormente el
funcionamiento normal del pin como salida.

Para comprender adecuadamente esta tltima afirmacién, vamos a

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output) 186

estudiar brevemente las caracteristicas eléctricas de los pines de entra-
da/salida. Como hemos dicho, la forma de interactuar con el exterior de
un pin de E/S es tipicamente mediante una tension eléctrica presente en
¢él. En el caso de las salidas, cuando escribimos un 1 légico en el regis-
tro se tendra un cierto voltaje en el pin correspondiente, y otro distinto
cuando escribimos un 0. En el de las entradas, al leer el pin obtendremos
un 1 o un 0 segun la tensién fijada en él por la circuiteria externa.

Tratemos en primer lugar las salidas, y consideremos el caso mas
comun hoy en dia de légica positiva —las tensiones de los 1 légicos
son mayores que las de los 8—. Las especificaciones eléctricas de los
circuitos indican tipicamente un valor minimo, VOHMIN, que especifica
la minima tensién que vamos a tener en dicho pin cuando escribimos
en él un 1 légico. Se especifica solo el valor minimo porque se supone
que el maximo es el de alimentacion del circuito. Por ejemplo 5V de
alimentacion y 4,2V como VOHMIN serian valores razonables. Estos valores
nos garantizan que la tensién en el pin estard comprendida entre 4,2 y
5V cuando en él tenemos un 1 légico. De manera analoga se especifica
VOLMAX como la mayor tensién que podemos tener en un pin cuando en
él escribimos un 0 l6gico. En este caso, la tensién minima es 0 voltios y
el rango garantizado estd entre VOLMAX, por ejemplo 0,8V, y 0V. En las
especificaciones de valores anteriores, V indica voltaje, 0 salida (output),
Hy L se refieren a nivel alto (high) y bajo (low) respectivamente, mientras
que MAX y MIN indican si se trata, como se ha dicho, de un valor maximo
o minimo. Inmediatamente veremos cémo estas siglas se combinan para
especificar otros parametros.

El mundo real tiene, sin embargo, sus limites, de tal modo que los
niveles de tension eléctrica especificados requieren, para ser validos, que
se cumpla una restriccién adicional. Pensemos en el caso comentado an-
tes en que una salida se conecta directamente a masa —es decir, OV—.
La especificacion garantiza, segin el ejemplo, una tensiéon minima de
4,2V, pero sabemos que el pin estd a un potencial de OV por estar co-
nectado a masa. Como la resistividad de las conexiones internas del
circuito es despreciable, la intensidad suministrada por el pin, y con
ella la potencia disipada, deberia ser muy elevada para poder satisfacer
ambas tensiones. Sabemos que esto no es posible, que un pin normal
de un circuito integrado puede suministrar como mucho algunos cente-
nares de miliamperios —y estos valores tan altos solo se alcanzan en
circuitos especializados de potencia—. Por esta razén, la especificaciéon
de los niveles de tensién en las salidas viene acompanada de una segun-
da especificaciéon, la de la intensidad maxima que se puede suministrar
—en el nivel alto— o aceptar —en el nivel bajo— para que los citados
valores de tensiéon se cumplan. Estas intensidades, IOHMAX e IOLMAX o
simplemente I0MAX cuando es la misma en ambas direcciones, suelen ser
del orden de pocas decenas de miliamperios —normalmente algo mas de

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output) 187

20mA, lo requerido para encender con brillo suficiente un LED—. Asi
pues la especificacion de los valores de tensién de las salidas se garantiza
siempre y cuando la corriente que circule por el pin no supere el valor
maximo correspondiente.

La naturaleza y el comportamiento de las entradas son radicalmente
distintos, aunque se defina para ellas un conjunto similar de parametros.
Mediante un puerto de entrada queremos leer un valor légico que se
relacione con la tensién presente en el pin, fijada por algin sistema
eléctrico exterior. Asi pues, la misién de la circuiteria del pin configurado
como entrada es detectar niveles de tension del exterior, con la menor
influencia en ellos que sea posible. De este modo, una entrada aparece
para un circuito externo como una resistencia muy elevada, lo que se
llama una alta impedancia. Dado que es un circuito activo y no una
resistencia, el valor que se especifica es la intensidad maxima que circula
entre el exterior y el circuito integrado, que suele ser despreciable en la
mayor parte de los casos —del orden de pocos microamperios o menor—.
Los valores especificados son ITHMAX e IILMAX o simplemente IIMAX si son
iguales. En este caso la segunda I significa entrada (input). Segun esto,
el circuito externo puede ser disefiado sabiendo la maxima corriente que
va a disiparse hacia el pin, para generar las tensiones adecuadas para ser
entendidas como 0 o 1 al leer el pin de entrada. Para ello se especifican
VIHMIN y VILMAX como la minima tensiéon de entrada que se lee como
un 1 légico y la maxima que se lee como un 0, respectivamente. En
ambos casos, por diseno del microcontrolador, se sabe que la corriente
de entrada estd limitada, independientemente del circuito externo.

i, Qué ocurre con una tensién en el pin comprendida entre VIHMIN y
VILMAX? La lectura de un puerto de entrada siempre devuelve un valor
l6gico, por lo tanto cuando la tension en el pin se encuentra fuera de
los limites especificados, se lee también un valor légico 1 o 0 que no se
puede predecir segin el diseno del circuito —una misma tensién podria
ser leida como nivel alto en un pin y bajo en otro—. Visto de otra forma,
un circuito —y un sistema en general— se debe disenar para que fije
una tensién superior a VIHMIN cuando queremos senalar un nivel alto, e
inferior a VILMAX cuando queremos leer un nivel bajo. Otra precaucion
a tener en cuenta con las entradas es la de los valores maximos. En este
caso el peligro no es que se lea un valor légico distinto del esperado o im-
predecible, sino que se dane el chip. Efectivamente, una tensién superior
a la de alimentacién o inferior a la de masa puede danar definitivamente
el pin de entrada e incluso todo el circuito integrado.

Hagamos un pequeno estudio de los circuitos eléctricos relacionados
con los dispositivos de nuestro ejemplo, el LED y el pulsador. Comence-
mos como viene siendo habitual por el circuito de salida. En la Figura 9.2
se muestra esquematicamente la conexién de un LED a un pin de E/S
de un microcontrolador. Un LED, por ser un diodo, tiene una tensién

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output) 188

R [/;I

——

VPIN I VD

Figura 9.2: Conexién de un LED a un pin de E/S de un microcontrolador

de conduccién méas o menos fija —en realidad en un LED depende mas
de la corriente que en un diodo de uso general— que en uno de color
rojo esta entorno a los 1,2V. Por otra parte, a partir de 10mA el brillo
del diodo es adecuado, pudiendo conducir sin deteriorarse hasta 30mA
0 mas. Supongamos en nuestro microcontrolador los valores indicados
mas arriba para VOHMIN y VOLMAX, y una corriente de salida superior a
los 20mA. Si queremos garantizar 10mA al escribir un 1 légico en el
pin, nos bastara con polarizar el LED con una resistencia que limite la
corriente a este valor en el peor caso, es decir cuando la tensién de salida
sea VOHMIN, es decir 4,2V. Mediante la ley de Ohm tenemos:

I=Y - 10mA =12212V = 3V, R = 3000

Una vez fijada esta resistencia, podemos calcular el brillo maximo
del led, que se daria cuando la tensién de salida es de 5V, y entonces la
corriente de 12,7mA aproximadamente.

% VCC
Pi n PULL-UP
gt

Figura 9.3: Conexién de un pulsador a un pin de E/S de un microcon-
trolador

Veamos ahora cémo conectar un pulsador a una entrada del circui-
to. En la Figura 9.3 se muestra el circuito esquematico de un pulsador
conectado a un pin de E/S de un microcontrolador. Un pulsador no es
mas que una placa de metal que se apoya o se separa de dos conectores,
permitiendo o no el contacto eléctrico entre ellos. Es, pues, un dispositi-
vo electromecanico que no genera de por si ninguna magnitud eléctrica.
Para ello, hay que conectarlo en un circuito y, en nuestro caso, en uno
que genere las tensiones adecuadas. Para seguir estrictamente los ejem-
plos, podemos pensar que el pulsador hace contacto entre los 5V de la

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output) 189

alimentacién y el pin. De este modo, al pulsarlo, conectaremos el pin
a la alimentacién y leeremos en él un 1, tal y como se ha considerado
en el coédigo de ejemplo. Sin embargo, si no estd pulsado, el pin no esté
conectado a nada por lo que el valor presente en él seria, en general,
indefinido. Por ello el montaje correcto requiere que el pin se conecte a
otro nivel de tensién, masa —0V— en este caso, a través de una resis-
tencia para limitar la corriente al pulsar. Como la corriente de entrada
en el pin es despreciable, el valor de la resistencia no es critico, siendo lo
habitual usar decenas o cientos de K. Segin este circuito y siguiendo
el ejemplo, al pulsar leeriamos un nivel alto y en caso de no pulsar, un
0 légico.

La configuracién mas habitual es, sin embargo la contraria: conectar
el pulsador a masa con uno de sus contactos y al pin y a la alimentacion,
a través de una resistencia, con el otro. De esta forma los niveles 16gicos
se invierten y se lee un 1 légico en caso de no pulsar y un nivel bajo al
hacerlo. Esto tiene implicaciones en el disefio de los microcontroladores
y en la gestion de la GPIO, que nos ocupa. Es tan habitual el uso de
resistencias conectadas a la alimentacién —llamadas resistencias de pull-
up o simplemente pull-ups— que muchos circuitos las llevan integradas
en la circuiteria del pin y no es necesario afiadirlas externamente. Estas
resistencias pueden activarse o no en las entradas, por lo que suele existir
alguna forma de hacerlo, un nuevo registro de control del GPIO en la
mayor parte de los casos.

9.1.2. Interrupciones asociadas a la GPIO

Como sabemos, las interrupciones son una forma de sincronizar el
procesador con los dispositivos de entrada/salida para que éstos puedan
avisar de forma asincrona al procesador de que requieren su atencion,
sin necesidad de que aquél se preocupe periddicamente de atenderlos
—Ilo que seria encuesta o prueba de estado. Los sistemas avanzados
de GPIO incorporan la posibilidad de avisar al procesador de ciertos
cambios mediante interrupciones, para poder realizar su gestién de forma
mas eficaz. Existen dos tipos de interrupciones que se pueden asociar a
la GPIO, por supuesto siempre utilizada como entrada, como veremos
a continuacion.

En primer lugar se pueden utilizar los pines como lineas de interrup-
cién, bien para sefialar un cambio relativo al circuito conectado al pin,
como oprimir un pulsador, bien para conectar una senal de un circuito
externo y que asi el circuito sea capaz de generar interrupciones. En este
dltimo caso el pin de la GPIO haria el papel de una linea de interrup-
cién externa de un procesador. En ambos casos suele poder configurarse
si la interrupcién se senala por nivel o por flanco y su polaridad. En
segundo lugar, y asociado a las caracteristicas de bajo consumo de los

9.1. Entrada/salida de propédsito general (GPIO - General Purpose Input Output) 190

microcontroladores, se tiene la interrupcion por cambio de valor. Esta
interrupcién puede estar asociada a un pin o un conjunto de ellos, y se
activa cada vez que alguno de los pines de entrada del grupo cambia su
valor, desde la dltima vez que se leyd. Esta interrupcion, ademas, suele
usarse para sacar al procesador de un modo de bajo consumo y activarlo
otra vez para reaccionar frente al cambio indicado.

El uso de interrupciones asociadas a la GPIO requiere afiadir nuevos
registros de control y estado, para configurar las interrupciones y sus ca-
racteristicas —control— y para almacenar los indicadores —flags— que
informen sobre las circunstancias de la interrupcién.

9.1.3. Aspectos avanzados de la GPIO

Ademas de las interrupciones y la relaciéon con los modos de bajo con-
sumo, los microcontroladores avanzados afiaden caracteristicas y, por lo
tanto, complejidad, a sus bloques de GPIO. Aunque estas caracteristi-
cas dependen bastante de la familia de microcontroladores, se pueden
encontrar algunas tendencias generales que se comentan a continuacion.

En primer lugar tenemos las modificaciones eléctricas de los bloques
asociados a los pines. Estas modificaciones afectan solo a subconjuntos
de estos pines y en algunos casos no son configurables, por lo que se
deben tener en cuenta fundamentalmente en el diseno electrénico del
sistema. Por una parte tenemos pines de entrada que soportan varios
umbrales légicos —lo mas normal es 5V y 3,3V para el nivel alto—.
También es frecuente encontrar entradas con disparador de Schmitt pa-
ra generar flancos mas rapidos en las sefiales eléctricas en el interior del
circuito, por ejemplo en entradas que generen interrupciones, lo que pro-
duce que los valores VIHMIN y VILMAX en estos pines estén mas proximos,
reduciendo el rango de tensiones indeterminadas —a nivel l6gico— entre
ellos. Tenemos también salidas que pueden configurarse como colector
abierto —open drain, en nomenclatura CMOS— lo que permite utilizar-
las en sistemas AND cableados, muy utilizados en buses.

Otra tendencia actual, de la que participa el ATSAM3XS8E, es utilizar
un muestreo periédico de los pines de entrada, lo que requiere almacenar
su valor en un registro, en lugar de utilizar el valor presente en el pin en
el momento de la lectura. De esta manera es posible anadir filtros que
permitan tratar ruido eléctrico en las entradas o eliminar los rebotes
tipicos en los pulsadores e interruptores. En este caso, se incorporan a
la GPIO registros para activar o configurar estos métodos de filtrado.
Esta forma de tratar las entradas requiere de un reloj para muestrearlas
y almacenar su valor en el registro, lo que a su vez requiere poder parar
este reloj para reducir el consumo eléctrico.

La tltima caracteristica asociada a la GPIO que vamos a tratar surge
de la necesidad de versatilidad de los microcontroladores. Los dispositi-

9.2. Gestién del tiempo

191

vos actuales, ademas de gran ntimero de pines en su GPIO, incorporan
muchos otros dispositivos —conversores ADC y DAC, buses e interfaces
estandar, etcétera— que también necesitan de pines especificos para re-
lacionarse con el exterior. Para dejar libertad al disenador de seleccionar
la configuracion del sistema adecuada para su aplicacién, muchos pines
pueden usarse como parte de la GPIO o con alguna de estas funciones
especificas. Esto hace que exista un complejo subsistema de encaminado
de senales entre los dispositivos internos y los pines, que afecta directa-
mente a la GPIO y cuyos registros de configuracién suelen considerarse
como parte de aquella.

9.2. (Gestion del tiempo

La medida del tiempo es fundamental en la mayoria de las activida-
des humanas y por ello, lo6gicamente, se incluye entre las caracteristicas
principales de los ordenadores, en los que se implementa habitualmente
mediante dispositivos de entrada/salida. Anotar correctamente la fecha
y hora de modificacién de un archivo, arrancar autométicamente tareas
con cierta periodicidad, determinar si una tecla se ha pulsado durante
mas de medio segundo, son actividades comunes en los ordenadores que
requieren de una correcta medida y gestion del tiempo. En estos ejem-
plos se pueden ver ademas las distintas escalas y formas de tratar el
tiempo. Desde expresar una fecha y hora de la forma habitual para las
personas —donde ademas se deben tener en cuenta las diferencias hora-
rias entre distintos paises— hasta medir lapsos de varias horas o pocos
milisegundos, los ordenadores son capaces de realizar una determina-
cién adecuada de tiempos absolutos o retardos entre sucesos. Esto se
consigue mediante un completo y elaborado sistema de tratamiento del
tiempo, que tiene gran importancia dentro del conjunto de dispositivos
y procedimientos relacionados con la entrada/salida de los ordenadores.

9.2.1. El tiempo en la E/S de los sistemas

Un sistema de tiempo real se define como aquél capaz de generar
resultados correctos y a tiempo. Los ordenadores de propésito general
pueden ejecutar aplicaciones de tiempo real, como reproducir una pelicu-
la o ejecutar un videojuego, de la misma forma en que mantienen la fecha
y la hora del sistema, disparan alarmas periddicas, etcétera. Para ser ca-
paces de ello, ademas de contar con la velocidad de proceso suficiente,
disponen de un conjunto de dispositivos asociados a la entrada/salida
que facilitan tal gestion del tiempo liberando al procesador de buena
parte de ella. En los microcontroladores, dispositivos especialmente di-
seflados para interactuar con el entorno y adaptarse temporalmente a

9.2. Gestién del tiempo

192

él, normalmente mediante proceso de tiempo real, el conjunto de dispo-
sitivos y mecanismos relacionados con el tiempo es mucho més variado
e importante.

En todos los ordenadores se encuentra, al menos, un dispositivo tipo
contador que se incrementa de forma periddica y permite medir inter-
valos de tiempo de corta duracion —milisegundos o menos—. A partir
de esta base de tiempos se puede organizar toda la gestién temporal
del sistema, sin mas que incluir los programas necesarios. Sin embargo
se suele disponer de otro dispositivo que gestiona el tiempo en formato
humano —formato de fecha y hora— que permite liberar de esta ta-
rea al software del sistema y ademas, utilizando alimentacién adicional,
mantener esta informacion atin con el sistema apagado. Por ultimo, pa-
ra medir eventos externos muy cortos, para generar sefiales eléctricas
con temporizacién precisa y elevadas frecuencias, se suelen anadir otros
dispositivos que permiten generar pulsos periédicos o aislados o medir
por hardware cambios eléctricos en los pines de entrada/salida.

Todos estos dispositivos asociados a la medida de tiempo pueden
avisar al sistema de eventos temporales tales como desbordamiento en los
contadores o coincidencias de valores de tiempo —alarmas— mediante
los correspondientes bits de estado y generacion de interrupciones. Este
variado conjunto de dispositivos se puede clasificar en ciertos grupos
que se encuentran, de forma méas o menos similar, en la mayoria de
los sistemas. En los siguientes apartados se describen estos grupos y se
indican sus caracteristicas mas comunes.

El temporizador del sistema

El temporizador —timer— del sistema es el dispositivo mas comin y
sencillo. Constituye la base de medida y gestién de tiempos del sistema.
Se trata de un registro contador que se incrementa de forma periddica
a partir de cierta senal de reloj generada por el hardware del sistema.
Para que su resolucién y tiempo méaximo puedan configurarse segin las
necesidades, es habitual encontrar un divisor de frecuencia o prescaler
que permite disminuir con un margen bastante amplio la frecuencia de
incremento del contador. De esta manera, si la frecuencia final de in-
cremento es f, se tiene que el tiempo minimo que se puede medir es el
periodo, T' = 1/f, y el tiempo que transcurre hasta que se desborde el
contador 2" - T, siendo n el nimero de bits del registro temporizador.
Para una frecuencia de 10KHz y un contador de 32 bits, el tiempo mini-
mo seria 100us y transcurririan unos 429 496s —casi cinco dias— hasta
que se desbordara el temporizador. El temporizador se utiliza, en su
forma més simple, para medir tiempos entre dos eventos —aunque uno
de ellos pueda ser el inicio del programa—. Para ello, se guarda el valor
del contador al producirse el primer evento y se resta del valor que tiene

9.2. Gestién del tiempo

193

al producirse el segundo. Esta diferencia multiplicada por el periodo nos
da el tiempo transcurrido entre ambos eventos.

El ejemplo comentado daria un valor incorrecto si entre las dos lec-
turas se ha producido mas de un desbordamientos del reloj. Por ello, el
temporizador activa una sefial de estado que generalmente puede causar
una interrupcién cada vez que se desborda, volviendo a 0. El sistema
puede tratar esta informacion, sobre todo la interrupcion generada, de
distintas formas. Por una parte se puede extender el contador con va-
riables en memoria para tener mayor rango en la cuenta de tiempos. Es
habitual también utilizarla como interrupcion peridédica para gestién del
sistema —por ejemplo, medir los tiempos de ejecucién de los procesos en
sistemas multitarea—. En este tltimo caso es habitual poder recargar el
contador con un valor distinto de 0 para tener un control mas fino de la
periodicidad de la interrupcién, por ello suele ser posible escribir sobre
el registro que hace de contador.

Ademés de este funcionamiento genérico del contador, existen algu-
nas caracteristicas adicionales bastante extendidas en muchos sistemas.
Por una parte, no es extrano que la recarga del temporizador después de
un desbordamiento se realice de forma automatica, utilizando un valor
almacenado en otro registro del dispositivo. De esta forma, el software
de gestion se libera de esta tarea. En sistemas cuyo temporizador ofrece
una medida de tiempo de larga duracién, a costa de una resolucién poco
fina, de centenares de ms, se suele generar una interrupcién con cada
incremento del contador. La capacidad de configuracién de la frecuencia
de tal interrupcion es a costa del prescaler. Es conveniente comentar que,
en arquitecturas de pocos bits que requieren contadores con maéas reso-
lucidn, la lectura de la cuenta de tiempo requiere varios accesos —por
ejemplo, un contador de 16 bits requeriria dos en una arquitectura de 8
bits—. En este caso pueden leerse valores erréneos si el temporizador se
incrementa entre ambos accesos, de forma que la parte baja se desborde.
Por ejemplo, si el contador almacena el valor 0x3AFF al leer la parte baja
y se incrementa a 0x3B00 antes de leer la alta, el valor leido serd 0x3BFF,
mucho mayor que el real. En estos sistemas el registro suele constar de
una copia de respaldo que se bloquea al leer una de las dos partes, con el
valor de todo el temporizador en ese instante. De esta manera, aunque el
temporizador real siga funcionando, las lecturas se haran de esta copia
bloqueada, evitando los errores.

En el Apéndice A se describen las particularidades del temporizador
en tiempo real RTT (Real-time Timer) del ATSAM3XSE.

Otros dispositivos temporales

Si solo se dispone de un dispositivo temporizador se debe elegir en-
tre tener una medida de tiempos de larga duracién —hasta de varios

9.2. Gestién del tiempo

194

anos en muchos casos— para hacer una buena gestién del tiempo a lo
largo de la vida del sistema o tener una buena resolucién —pocos ms
o menos— para medir tiempos con precisién. Por eso es comun que los
sistemas dispongan de varios temporizadores que, compartan o no la
misma base de tiempos, pueden configurar sus periodos mediante pres-
calers individuales. Estos sistemas, con varios temporizadores, anaden
otras caracteristicas que permiten una gestién mucho mas completa del
tiempo. Las caracteristicas mas comunes de estas extensiones del tem-
porizador basico se analizan a continuacion.

Algtn registro temporizador puede utilizar como base de tiempos
una entrada externa —un pin del microcontrolador, normalmente—.
Esto permite por una parte tener una fuente de tiempo con las caracte-
risticas que se deseen o utilizar el registro como contador de eventos, no
de tiempos, dado que las sefiales en el pin no tienen por qué cambiar de
forma periédica.

Se utilizan registros de comparacién, con el mismo niimero de bits
del temporizador, que desencadenan un evento cuando el valor del tem-
porizador coincide con el de alguno de aquéllos. Estos eventos pueden
ser internos, normalmente la generacién de alguna interrupcién, o exter-
nos, cambiando el nivel eléctrico de algiin pin y pudiendo generar salidas
dependientes del tiempo.

Se anaden registros de copia que guardan el valor del temporizador
cuando se produce algtin evento externo, ademas de poder generar una
interrupcién. Esto permite medir con precisién el tiempo en que ocurre
algo en el exterior, con poca carga para el software del sistema.

Estdan muy extendidas como salidas analégicas aquellas que permiten
modulaciéon de anchura de pulsos, PWM — Pulse Width Modulation—.
Se dispone de una base de tiempos asociada a un temporizador que mar-
ca la frecuencia del canal PWM, y de un registro que indica el porcentaje
de nivel alto o bajo de la senial de salida. De esa forma se genera una
sefial periédica que se mantiene a nivel alto durante un cierto tiempo y
a nivel bajo el resto del ciclo. Como el ciclo de trabajo depende del valor
almacenado en el registro, la cantidad de potencia —nivel alto— entre-
gada de forma analdgica en cada ciclo se relaciona directamente con su
valor —magnitud digital—. Si la salida PWM ataca un dispositivo que
se comporta como un filtro pasa-baja, lo que es muy frecuente en dispo-
sitivos reales —bombillas y LEDs, calefactores, motores, etcétera— se
tiene una conversién digital-analdgica muy efectiva, basada en el tiempo.

El reloj en tiempo real

En un computador, el reloj en tiempo real o RTC (Real-time Clock)
es un circuito especifico encargado de mantener la fecha y hora actua-
les incluso cuando el computador estd desconectado de la alimentacion

9.3. El entorno Arduino

195

eléctrica. Es por este motivo que suele estar asociado a una bateria o
a un condensador que le proporciona la energia necesaria para seguir
funcionando cuando se interrumpe la alimentacion.

Habitualmente este periférico emplea como frecuencia base una senal
de 32768 Hz, es decir, una sefial cuadrada que completa 32 768 veces un
ciclo OFF-ON cada segundo. Esta frecuencia es la empleada habitual-
mente por los relojes de cuarzo, dado que coincide con 2% ciclos por
segundo, con lo cual el bit de peso 15 del contador de ciclos cambia de
valor exactamente una vez por segundo y puede usarse como senal de
activacion del segundero en el caso de un reloj analégico o del contador
de segundos en uno digital.

El médulo RTC se suele presentar como un dispositivo independiente
conteniendo el circuito oscilador, el contador, la bateria y una pequena
cantidad de memoria RAM que se usa para almacenar la configuracién
de la BIOS del computador. Este moédulo se incorpora en la placa base
del computador presentando, respecto de la opciéon de implementarlo
por software, las siguientes ventajas:

= El procesador queda liberado de la tarea de contabilizar el tiempo.
El RTC dispone de algunos registros de E/S mediante los cuales
se pueden configurar y consultar la fecha y hora actuales.

= Suele presentar mayor precisién, dado que estd disenado especifi-
camente.

s La presencia de la bateria permite mantener el reloj en funciona-
miento cuando el computador se apaga.

9.3. El entorno Arduino

Arduino de Ivrea (955-1015) fue Rey de Italia entre 1002 y 1014.
Massimo Banzi y un grupo de docentes del Interaction Design Institute
en Ivrea, en Italia, desarrollaron una plataforma de hardware libre ba-
sada en un microcontrolador y un entorno de desarrollo disefiados para
facilitar la realizacién de proyectos de electronica. Banzi y su grupo se
reunian habitualmente en el Bar del Rey Arduino, en la localidad de
Ivrea, de ahi el nombre del sistema.

Arduino estd compuesto por una plataforma de hardware libre y un
entorno de desarrollo. A grandes rasgos, esto significa que el disefio estd
a disposicién de quien lo quiera emplear y modificar, dentro de unos
limites de beneficio econémico y siempre publicando las modificaciones
introducidas.

Existen diferentes versiones de la arquitectura Arduino que emplean
diversos microcontroladores respetando las dimensiones fisicas de los

9.3. El entorno Arduino

196

ARDUINO.CC - MADE IN

Figura 9.5: Tarjeta Arduino Due

conectores de ampliacién y la ubicaciéon de las sefiales en los mismos.
El entorno de desarrollo introduce una capa de abstraccién mediante
la cual un conjunto de comandos y funciones puede ser empleado en
cualquier plataforma Arduino.

En nuestro caso, usaremos la versién Arduino Due —véase la Figu-
ra 9.5— que, respecto de la tarjeta Arduino Uno original —mostrada
en la Figura 9.4—, entre otras diferencias, presenta un microprocesador
ATSAM3XSE, mas potente que el ATmega328 de aquella y con mayor
nimero de entradas/salidas.

En la primera parte de las préacticas se ha utilizado el conjunto de
instrucciones Thumb correspondiente a la versién Cortex-MO de la ar-

1
2

9.3. El entorno Arduino

197

Figura 9.6: Tarjeta de E/S de practicas de laboratorio

3V3o

=

R\VYG §B§
o

o o o

, o , ,

GNDx 13 8 m 6w

Figura 9.7: Esquema de la tarjeta de E/S de précticas de laboratorio

quitectura ARM. El microcontrolador ATMSAM3XSE de la tarjeta Ar-
duino Due implementa la versién Cortex-M3 que utiliza un conjunto de
instrucciones mayor, el Thumb II. Aunque todas las instrucciones Thumb
estan incluidas en Thumb II existe una diferencia critica en el lenguaje
ensamblador, que se senala aqui porque puede dar lugar a errores.

Las instrucciones aritméticas y légicas del conjunto Thumb II pueden
decidir modificar o no los indicadores de estado —flags—. Esta circuns-
tancia se expresa en lenguaje ensamblador afiadiendo una s al nombre
de la instrucciéon cuando se quiera que dicha instruccion los modifique,

de manera que se tiene que:

ands r0, rl, r2 @ Si modifica los indicadores
and r0, rl, r2 @ No los modifica

9.3. El entorno Arduino

198

Figura 9.8: Tarjeta de E/S insertada en la Arduino Due

Si bien esta caracteristica anade potencia al conjunto de instruc-
ciones, es facil confundirse cuando se estd acostumbrado a programar
con instrucciones Thumb, ya que en el caso del juego de instrucciones
Thumb, todas las instrucciones afectan a los indicadores de estado.

Puesto que el juego de instrucciones Thumb Il es mas potente que
el visto hasta ahora, es recomendable consultar el manual CortexM3
Instruction Set [Tex10] para conocer todas las posibilidades de este con-
junto de instrucciones.

Para el desarrollo de las practicas, se ha confeccionado una tarjeta
especifica —mostrada en la Figura 9.6— que contiene un pulsador y
un LED RGB conectados como muestra la Figura 9.7 que se emplearan
como dispositivos de E/S. La Figura 9.8 muestra la tarjeta instalada
sobre la Arduino Due, donde puede apreciarse que, ademas de insertar
la tarjeta correctamente, hay que conectar un cable de alimentacién al
pin de la Arduino Due rotulado con el texto 3.3V. Como se puede ver
en la Figura 9.7, el LED RGB es del tipo d&nodo comun, por lo que
serd necesario escribir un 0 en cada salida conectada a un LED para
encenderlo y un 1 para mantenerlo apagado. Igualmente se puede ver
cémo se conecta el pulsador a un pin y a masa. Se infiere, pues, que
serd necesario activar el pull-up de la salida 13 para leer y que en el
estado no pulsado se obtendrd un 1 en el pin. Al pulsarlo, légicamente,
cambiara a 0.

El entorno de programacién de Arduino —véase la Figura 9.9— se
presenta como un editor de cédigo en el cual podemos escribir nuestro
programa, guardarlo, compilarlo y subirlo al dispositivo Arduino que
tengamos conectado. La version del entorno de Arduino que se va a
usar en las practicas ha sido modificada para permitir el uso de archivos

9.3. El entorno Arduino

199

fuente en ensamblador. Las instrucciones para instalar esta versiéon se
pueden consultar en el sitio web del libro.

-

sketch_novl3a Arduino 0158 S

Archive Editar Programa Herramientas Ayuda

sketch_novl 3a

roid setup () { -

put your setup c to run once:

void loop() {
// put your main eo

e here, to run repeatedly:

Arduino Due (|

Figura 9.9: Entorno de programacién Arduino

La estructura de un programa tipico de Arduino consta de dos fun-
ciones:

= «void setup()»: Contiene el conjunto de acciones que se realizaran
al inicio de nuestro programa. Aqui habitualmente configuraremos
las entradas/salidas que vayamos emplear y daremos valores ini-
ciales a las variables.

= «void loop()»: Contiene el codigo que se ejecutara indefinidamen-
te.

Es necesario especificar al entorno el modelo de sistema Arduino
que tenemos conectado para que se usen las bibliotecas adecuadas y
se asignen correctamente las sefiales de E/S, se acceda correctamente
a los registros del procesador, etcétera. Para ello emplearemos la en-
trada «Placa» dentro del mend «Herramientas». En nuestro caso se-
leccionaremos la opcién «Arduino Due (Programming Port)» —véase la
Figura 9.10 para Windows y la Figura 9.11 para GNU/Linux—. Los dos

http://lorca.act.uji.es/libro/introARM2016/

9.3. El entorno Arduino

200

sketch_novD6a Arduino 0158 = | B |
Archivo Editar Programa [Hemamientas] Ayuda

Auto Formato Cirl+T

Archive de programa.

sheteh_noviia R am e ST

void setup() {

Menitor Serie Crl+ Maydsculas+M il
Put your setup
Placa | Placas Arduino AVR
' Port ¥ Arduino Yan
Arduino Uno
Programador »

———— Arduino Duemilanove or Diecimila
Arduine Nano
Arduine Mega or Mega 2560
Arduine Mega ADK
Arduino Leonardo
Arduine Micro
Arduino Esplora
Arduino Mini
Arduine Ethemet
Arduine Fio
Arduino BT
LilyPad Arduino US8
LilyPad Arduino
Arduine Pro or Pro Mini
a Arduine NG or older
Arduine Robot Control
Arduine Robot Motor

Placas Arduino AR; (32 bits)

Arduine Due (Programming Port)

Arduine Due (Native USB Port)

Arduina Due (Pragiamming Pa

Figura 9.10: Seleccién del sistema Arduino a emplear en Windows

® W sketch_nov06a Arduino 0158 <@gbox> @0

Archive Editar Programa

Herramientas [RALE

Aute Formato Ctrl+T
Archiva de programa.

Reparar codificacion & Recargar

Monitor Serie Ctrl+Mayiseulas+M

sketch_nov06a

void setup() {
put your setup code

Placas Arduine AR

} Port Arduine Yun
void Toop() { Programador » | Arduino Uno

put your main code Hloy o oatiader Arduine Duerilanove or Diecirnila
} Arduino Nano

Arduing Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo
Arduing Micro

Arduino Esplora
Arduino Mini

Arduing Ethernet
Arduino Fio

Arduino BT

LilyPad Arduino USB
LilyPad Arduino

| Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robat Control
Arduino Robot Motor

K1

Placas Arduino AR; (32 bits)

Arduine Due (Progra

Arduino Due (Native USE Port)

Arduing Due (P

Figura 9.11: Seleccién del sistema Arduino a emplear en GNU /Linux

puertos USB de la tarjeta Arduino Due estan identificados en la cara de
soldaduras de la misma.
De la misma forma, hay que indicar el puerto serie de comunicaciones

9.3. El entorno Arduino 201

sketch_nov06a Arduino 0158 o= []

Archivo Editar Programa [Herramientzs) Ayuda
Auto Formato Cul+T

Archivo de programa

sketch_novlBa

Reparar codificacién & Recargar.
void setup () {

Monitor Serie Ctrl+May Gsculas+M
/4 put your setup |
Placa »
) Port ¥ comi
voia comz
id leop() { Programador
put your main cf ¥ COMA (Arduine Due (Programming Port])

Quemar Bootloader

Figura 9.12: Seleccién del puerto de comunicaciones en Windows

@ @ sketch_novo6a Arduino 0158 <@gbox>

G
G
&

Archivo Editar Programa [EENEIGITENEEN Ayuda

Aute Formato ctri+T
Archivo de programa.

Reparar codificacion & Recargar,

Monitor Serie Ctrl4+-Mayiiseulas+M

sketch_novisa

void setup() {
put your setup code

Placa »
i « jdewttyACMO (Arduino Due (Programming Port))
void Toop() { Programador > fdevittySO
put your main code oo mostozdar fdewittyS1
H

Figura 9.13: Seleccién del puerto de comunicaciones en GNU /Linux

en que esta conectado el sistema Arduino, lo cual especificaremos me-
diante la entrada «Port» dentro del ment «Herramientas», como mues-
tran la Figura 9.12 para Windows y la Figura 9.13 para GNU/Linux.

9.4. Creacion de proyectos

202

Como opciones se nos ofreceran los puertos serie —COMx o /dev/ttyx
en Windows y GNU/Linux, respectivamente— de que disponga el siste-
ma. Tanto en Windows como en GNU /Linux aparece como opcién un
puerto —que es donde se encontrard conectada nuestra tarjeta Arduino
Due— junto a cuyo nombre aparecerd el texto (Arduino Due (Program-
ming Port)) y es, por tanto, el que debemos seleccionar.

9.4. Creacién de proyectos

El entorno Arduino posee una estructura denominada proyecto —sketch

en la bibliografia Arduino— que contiene los archivos correspondientes
a cada programa. Cuando se inicia el entorno, se nos muestra un pro-
yecto vacio con un nombre del tipo «sketch_mmmdda» —donde «mmm» es
la abreviatura del nombre del mes actual y «dd» es el dia del mes— que
podemos usar como base para desarrollar un nuevo programa. De la mis-
ma forma, mediante la entrada «Abrir...» dentro del meni «Archivo»
podemos abrir un proyecto existente.

Los archivos que componen un proyecto se guardan en una carpeta
cuyo nombre coincide con el del proyecto. Generalmente un proyecto
consta de un solo archivo de extensién «.ino» —con el mismo nom-
bre que la carpeta— que contiene el codigo en lenguaje «C / C++» del
programa principal.

Un programa puede, sin embargo, constar de mas de un archivo.
En tal caso, para anadir archivos al proyecto emplearemos el botén del
entorno marcado con un recuadro en la esquina superior derecha en la
Figura 9.9, que desplegard un ment del cual elegiremos la opcién Nueva
Pestafia. Al hacerlo, en la parte inferior del entorno aparecerd una barra
en la que se nos solicitara el nombre de la nueva pestana —y por tanto del
archivo en que se guardard su contenido— donde deberemos especificar
tanto el nombre como la extension de dicho archivo y crear tanto la
pestafia como el archivo pinchando en el botén 0k.

9.4.1. Ejemplo

Como ejemplo basico vamos a mostrar un programa que hace par-
padear el LED incorporado en la tarjeta Arduino. De momento no es
necesario que la tarjeta esté conectada al computador, con lo que esta
fase se puede llevar a cabo sin necesidad de poseer una tarjeta Arduino.
El cédigo es el mostrado en la Figura 9.14.

Una vez introducido el c6digo como texto, podemos comprobar que
es correcto —lo cual implica compilarlo— mediante el botén de la parte
izquierda de la barra de botones —marcado con un circulo en la Fi-
gura 9.9 y que hace aparecer el texto Verificar cuando situamos el

9.4. Creacion de proyectos

203

r Y
blink Arduino 0158 b=)

Archivo Editar Programa Herramientas Ayuda

Elink
enos ¥ apagamos el led en ensamblador

#include "blink.h"

:larar la funcidn que contiene

ffoel o o ensamblador

#define LED 13 /4 El LED esta co

ectado al pin 13

void setup () {
pintMode (LED, OUTEOT) ;
Serial.begin(Sg00);

por el pusrto serie

void loop() {
int vuelta; /4 Valor devuelto por el programa ensamblador

Serial.println(”Llamamos a blink 5 wveces, 300 nms™);

vuelta = blink (5, 300); // Invocamos al programa ensamblador
Serial.print("Ha devuelto el CIP ID: ");
Serial.println{vuelta, HEX);

1 -

Figura 9.14: Entorno Arduino con el programa «blink» cargado

cursor sobre él—. Tras el proceso de compilaciéon se mostraran los posi-
bles errores detectados indicando el nimero de linea en que se encuentra
cada uno de ellos o, si no hay errores, la cantidad de memoria ocupada
por el cbédigo generado y el maximo de que dispone la tarjeta Arduino
seleccionada actualmente, como puede apreciarse en la Figura 9.15.
Mediante el segundo botén de la barra de botones —marcado con un
cuadrado en la Figura 9.9 y que hace aparecer el texto Subir (en Win-
dows) o Cargar (en GNU/Linux) cuando situamos el cursor sobre él— se
desencadena el mismo proceso pero, si en la compilacién no se han pro-
ducido errores, el c6digo generado es enviado a la tarjeta Arduino —que
ahora si debe estar conectada al computador— y ejecutado de inme-
diato. De hecho, la programacién se verifica comunicando el ordenador
con la tarjeta y forzando a que se ejecute un programa especial llama-

9.4. Creacion de proyectos

204

' B
blink Arduino 0158 =

Archivo Editar Programa Herramientas Ayuda

FEOGEAMA: Blink
E emos ¥ apagamos £l led en ensamblador

#include "blink.h" arar la funcién cque contiene

enzamblador

#define LED 13 /4 ELl LED esta conectado al pin 13

void setup() {
pinMode (LED, OTTEIT) »
Serial.begin(9600) ;

/ Configura el pin 13 como
Habilita la comumnic
// por el puerto serie

void loopi() {
int wvuelta; /4 Valor devuelto por el programa ensamblador

Serial.println("Llamamos a blink 5 veces, 300 ms");

vuelta = blink (5, 300); // Invocamos al programa ensamblador
Serial.print("Ha devuelto =1 CIP ID: "):
Serial.printlnivuelta, HEX):

1 -

Arduino [

Figura 9.15: Resultado de la compilacién del programa «blink»

do bootloader. Este programa lee del puerto USB-serie las instrucciones
a cargar en la ROM. Una vez terminada la comunicacién, el ordenador
fuerza un RESET y el microcontrolador comienza a ejecutar el programa
descargado.

Siguiendo el procedimiento descrito se puede programar el micro-
controlador empleando el lenguaje de alto nivel C / C++ y las funciones
especificas de Arduino. Nuestro objetivo, sin embargo, es programar el
microcontrolador empleando directamente su lenguaje ensamblador y
para conseguirlo vamos a introducir unas ligeras modificaciones en el
cédigo.

En primer lugar, escribiremos nuestro programa ensamblador en un
archivo con la extension .s para identificarlo como cédigo ensamblador.
En el caso del programa blink que hace parpadear el LED de Arduino,

© 0 N O U W N

AR R R R R R W W W W W W W W W W NN NN N NNN NN 2 =R =
DOk W N R O O D0 R WN RO © 0N U R WD RO © N U W NN = O

9.4. Creacion de proyectos 205

el cbédigo ensamblador correspondiente seré:

blink.s &
blink.s - Parpadeo en ensamblador
Acceso al controlador del PIO B
.syntax unified
.cpu cortex-m3
.text
.align 2
.thumb
. thumb_func
.extern delay @ No es necesario
.global blink @ Funcidén externa
.type blink, S%function
.equ PIOB, 0x400E1000 @ Dir. base del puerto B
.equ SODR, 0x030 @ OFFSET Set Output Data Reg
.equ CODR, 0x034 @ OFFSET Clear Output Data Reg
.equ CHIPID, 0x400E0940 @ Registro CHIP ID
.equ LEDMSK, 0x08000000 @ El LED estd en el pin 27

/* int blink(int times, int delay)
ro = times. Nimero de veces que parpadea
rl = delay. Retardo del parpadeo
Devuelve el CHIP_ID, porque si
Los parametros se pasan en r0-r3
El valor devuelto en r@ 6 r@-rl si ocupa 8 bytes
Cualquier funcién puede modificar r@-r3
El resto se han de preservar x/

blink:
push {r4-r7, 1r} Vamos a usar de r4 a r7
porque llamamos a delay

@
@
mov rd, ro @ r4 contiene el nldmero de veces
@
@
@

mov r5, rl r5 contiene el retardo a pasar a delay

ldr ré, =PIOB Direccién base del Controlador PIO B

ldr r7, =LEDMSK Méscara con el bit 27 a 1 (pin del LED)
principio:

str r7, [r6, #SODR] @ Encendemos el LED escribiendo en SET

mov ro, r5 @ Preparamos el parametro de delay en r@

bl delay @ Invocamos a la funcidén delay

str r7, [r6, #CODR] @ Apagamos el LED escribiendo en CLEAR

mov ro, r5 @ Volvemos a llamar a delay como antes

bl delay

subs rd, rd, #1 @ Decrementamos el numero de veces

bne principio @y si no es cero seguimos. i0jo a la s!

ldr ré, =CHIPID @ Leemos CHIPID_CIDR

ldr ro, [r6] @ y devolvemos el valor en r0@

http://lorca.act.uji.es/libro/introARM2016/codigo/blink.s

47
48

Tt W N =

© 0 N O U ke W NN =

e e e e e e
© 0 N O U W N = O

9.4. Creacion de proyectos

206

pop {r4-r7, pc} @ ret con pop al pc.
.end

Para poder ejecutar este codigo desde el entorno de programacién de
Arduino es necesario indicar durante el proceso de compilacién que se
utilizan funciones en otro moédulo, y que siguen el convenio de llamada
de funciones de lenguaje C, ligeramente distinto del de C++. Para ello
emplearemos un fichero de cabecera con extension .h que llamaremos
blink.h y cuyo contenido sera:

blink.h =
// Declaracién de las funciones externas

extern "C" {
int blink(int times, int del);
b

Este cédigo define una funcién llamada blink que acepta dos argu-
mentos. El primer argumento indica el nimero de veces que se desea que
el LED parpadee y el segundo argumento el periodo de tiempo en mi-
lisegundos que el LED permanecera encendido y apagado en cada ciclo
de parpadeo, es decir, el ciclo completo tendra una duraciéon del doble
de milisegundos que el valor de este argumento.

Finalmente, el programa principal se encarga de definir los valores
iniciales de las variables y de invocar el cédigo en ensamblador que
efectivamente hard parpadear el LED.

blink.ino &
/*
PROGRAMA: Blink
Encendemos y apagamos el led en ensamblador

*/
#include "blink.h" // Para declarar la funcién que

// contiene el cédigo ensamblador
#define LED 13 // EU LED estd conectado al pin 13

void setup() {
pinMode(LED, OUTPUT); // Configura el pin 13 como salida
Serial.begin(9600); // Habilita la comunicacién por el puerto serie
int vuelta; // Valor devuelto por el programa ensamblador

void loop() {

Serial.println("Llamamos a blink 5 veces, 300 ms");

http://lorca.act.uji.es/libro/introARM2016/codigo/blink.h
http://lorca.act.uji.es/libro/introARM2016/codigo/blink.ino

20
21
22
23
24
25

9.5. Ejercicios

vuelta = blink(5, 300); // Invocamos el programa ensamblador

Serial.print("Ha devuelto el CIP ID: ");
Serial.println(vuelta, HEX);
}

En este programa podemos, ademds, senalar que se ha hecho uso de
la comunicacién serie incorporada en la plataforma Arduino para ob-
tener mensajes durante la ejecuciéon del programa. Para ello hay que
activar esta funcionalidad dentro de «setup()» mediante la llamada a la
funcién «Serial.begin(9600)», donde el argumento indica la velocidad
de comunicacién en baudios. Posteriormente, ya dentro de la funcién
«loop», se pueden enviar mensajes a través del puerto serie —asociado
al USB— empleando las funciones «Serial.print» —muestra el texto
que se le pasa como argumento y permite seguir escribiendo en la mis-
ma linea— y «Serial.println» —muestra el texto y pasa a la linea
siguiente—. El argumento de estas funciones puede ser una cadena de
caracteres entre comillas —que se mostrara textualmente— o una varia-
ble, en cuyo caso se mostrard su valor. En la pagina www.arduino.cc —o
desde el propio entorno— se puede acceder a la referencia para obtener
informacién sobre las funciones de Arduino. Para visualizar los mensajes
recibidos hay que iniciar el Monitor Serie, lo cual se consigue pinchando
sobre el botén del extremo derecho de la barra de botones —que contie-
ne el icono de una lupa y que hace aparecer el texto Monitor Serie (en
Windows) o Monitor Serial (en GNU/Linux) cuando situamos el cursor
sobre él—. Hay que tener en cuenta que al iniciar el Monitor Serie se
envia a la tarjeta Arduino una senal de RESET.

Identificacién de las entradas/salidas

El estdndar Arduino otorga a cada entrada/salida un nimero de
identificacion que es independiente del modelo de tarjeta Arduino em-
pleada. Asi pues, la salida niimero 13 estd conectada a un diodo LED
incorporado en la tarjeta Arduino y es la salida que usa el programa
mostrado. En nuestro caso, el diodo LED RGB de la tarjeta de practi-
cas estd conectado a los pines de E/S nimeros 6 —azul—, 7 —verde—y
8 —rojo—, mientras que el pin 13 estd conectado al pulsador, como se
muestra en el Cuadro A.5 del Apéndice A.

9.5. Ejercicios

> 9.1 Conecta a la tarjeta Arduino la tarjeta de practicas de forma que
los tres pines bajo el LED se correspondan con los pines 6, 7 y 8

9.5. Ejercicios

208

y los otros dos pines estén conectados al pin 13 y al pin GND que
hay junto a él. Recuerda conectar el cable al pin 3.3V de la tarjeta
Arduino.

9.11

9.1.2

9.1.3

Inicia el entorno Arduino y abre el proyecto blink mediante
la opcién Archivo - Ejemplos - 01.Basics - Blink del me-
ni. Compilalo y stubelo a la tarjeta. Comprueba que el LED
incorporado en la tarjeta Arduino Due parpadea —de color
amarillo, situado aproximadamente entre los dos conectores
USB de la misma e identificado con la letra L—.

Sustituye en blink.c las tres apariciones del nimero 13 (co-
mo argumento de la funcién «pinMode» y de las dos llamadas
a la funcién «digitalWrite») por el nimero 6. Compila y
sube a la tarjeta el nuevo programa. ;Cémo ha cambiado el
comportamiento del programa?

Modifica el programa blink.c para que haga parpadear el
LED de color rojo.

> 9.2 Abre el proyecto blink_asm, que se encuentra en la carpeta «1.
Introduccién a la ES» de la coleccion de ejercicios para Arduino.

9.2.1

9.2.2

9.2.3

9.24

Compilalo y ejecttalo. Comprueba que el LED de la tarjeta
Arduino Due parpadea. Recordemos que el microcontrolador
ATSAM3XSE, incorporado en la tarjeta Arduino Due que es-
tamos usando, posee varios P10s (Parallel Input Output) con
varios pines de E/S cada uno de ellos, de forma que los pines
6, 7 y 8 de la tarjeta Arduino estan fisicamente conectados a
los pines 24, 23 y 22 del PI0 C del ATSAM3XSE respectiva-
mente, como se muestra en el Cuadro A.5 del Apéndice A.

Consulta el Cuadro A.1 del Apéndice A para determinar la
direccién del registro base del PI0 C.

Realiza las modificaciones necesarias en blink_asm.c y en
blink.s para que haga parpadear el LED de color rojo. Ten
en cuenta que, mientras que el LED incorporado en la tar-
jeta Arduino Due se enciende escribiendo un 1 y se apaga
escribiendo un 0@ en el puerto correspondiente, cada compo-
nente del LED RGB de la tarjeta de practicas se enciende
escribiendo un 0 y se apaga escribiendo un 1 en su puerto de
E/S.

Comenta qué modificaciones has tenido que introducir en el
programa.

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

9.5. Ejercicios 209

> 9.3 Tal como vimos al estudiar las funciones, hay dos formas de pasar
parametros: por valor y por referencia. En el ejemplo propuesto se
muestra la técnica de paso de parametros por valor a un programa
en ensamblador —a través de los registros r@ y rl—. Alguna vez,
sin embargo, serd necesario poder acceder desde el programa en
ensamblador a una variable del programa principal. Debemos es-
tablecer un mecanismo para poder transferir informacién entre el
programa en C y el codigo ensamblador. Para ello declaramos un
vector en C y declaramos su nombre como .extern en el progra-
ma ensamblador para acceder a él usando su propio nombre como
etiqueta.

Abre el proyecto «blink_cadena», que se encuentra en la carpe-
ta «1. Introduccién a la ES» de la coleccién de ejercicios para
Arduino, y observa que presenta las siguientes diferencias con res-
pecto al proyecto «blink_asm»:

e Se ha modificado la declaracién de la funcién blink en el fiche-
ro «blink.hy» para que no acepte parametros pero siga devol-
viendo un resultado. Para ello se han eliminado las declara-
ciones de los dos parametros: «int time» e «int dely». Tam-
bién se han eliminado los pardmetros entre paréntesis en la
invocacién a la funcién blink en el fichero «blink_asm.ino».

e Se ha declarado una cadena de caracteres al principio del pro-
grama en C, con el contenido «mensaje» donde es importante
que el ultimo elemento de la cadena sea el caracter 0.

e Se ha declarado el nombre de la cadena en el programa en-
samblador como «.extern» para que dicho nombre pueda uti-
lizarse como una etiqueta dentro del programa ensamblador.

e Al eliminar los pardmetros de la funcién blink, en el programa
en ensamblador hemos asignado al retardo una cantidad fija
—#300— y el nimero de veces que parpadea el LED serd el
numero de caracteres de que consta la cadena. Para ello se
ha confeccionado un bucle que recorre la cadena y realiza un
parpadeo por cada caracter de la misma hasta encontrar el 0
del final.

9.3.1 Completa el programa ensamblador para que realice la fun-
cién descrita.

9.3.2 Compilalo y stibelo a la tarjeta Arduino Due.

9.3.3 Modifica la longitud de la cadena para comprobar que real-
mente el programa hace lo que se espera.

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

9.5. Ejercicios

210

9.5.1. Ejercicios de nivel medio

> 9.4 Modifica el programa ensamblador para que devuelva el ntime-
ro de caracteres de la cadena. Para ello simplemente tienes que
copiar dicho valor en el registro r@ antes de que el programa en
ensamblador regrese.

> 9.5 Modifica el programa en C para que muestre en pantalla el ni-
mero de caracteres de la cadena. Recuerda que para ello debes
emplear las funciones que muestran informacién en pantalla, es
decir, «Serial.print» y «Serial.printlny».

9.5.2. Ejercicios de nivel avanzado

> 9.6 Consulta el Cuadro A.8 del Apéndice A y, a partir de su conte-
nido, completa el proyecto «leefecha», disponible en la carpeta
«1. Introduccion a la ES» de la coleccion de ejercicios para Ar-
duino, para que acceda a los registros RTC_CALR y RTC_TIMR y lea
la configuracién de fecha y hora actuales del ATSAM3XSE.

9.6.1 Comparte esa informaciéon con el programa principal me-
diante los vectores fecha y hora y muestra en pantalla la
fecha y hora actuales usando adecuadamente las funciones
«Serial.print» y «Serial.println».

9.6.2 ;Cual es la fecha con que se configura el RT'C por defecto?

9.6.3 En el campo DAY del registro RTC_CALR se almacena el dia
de la semana dejando la codificacién al criterio del usuario.
Atendiendo al contenido de este campo cuando se inicializa
el sistema, ;qué codificacién se emplea por defecto para el
dia de la semana?

9.5.3. Ejercicios adicionales

> 9.7 La técnica de comparticién de variables se puede emplear también
para devolver informacién desde el programa en ensamblador al
programa invocador. En lenguaje C se puede reservar espacio para
un vector de enteros llamado «vectory», de forma equivalente a
como harfamos con «.space m» en ensamblador, de la siguiente
forma:;:

«int vector[n];»

Hay que tener en cuenta, sin embargo, que el pardmetro «m» indica
numero de bytes a reservar, mientras que cada elemento del vector

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

9.5. Ejercicios 211

ocupa 4 bytes —1 word— en memoria. Asi pues, para realizar la
reserva en memoria de un vector de «n» elementos, en ensamblador
debemos usar m = 4 x n.

Asi mismo, desde el programa en C podemos acceder al elemen-
to i-ésimo del vector mediante «vector[i]l», pudiendo «i» tomar
valores entre «@» y «n-1».

9.7.1 Abre el proyecto «blink_vect» —carpeta «1. Introduccién a
la ES» de la coleccién de ejercicios para Arduino—.

9.7.2 Compléta dicho proyecto considerando lo expuesto anterior-
mente y empleandolo de forma adecuada, para que devuelva
en el vector llamado «retorno» el contenido de los registros
ro al r7.

9.7.3 Introduce las modificaciones necesarias para que el programa
en C muestre en pantalla el contenido de los registros ro al
r7 empleando «Serial.print» y «Serial.println». Ten en
cuenta que estas funciones pueden mostrar valores numéricos
en hexadecimal si se les anade el modificador «HEX», como
por ejemplo en «Serial.println(n, HEX);».

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

cCarPiTULO

Gestion de la Entrada/Salida y
otros aspectos avanzados

Indice
10.1. Gestion de la entrada/salida 213
10.2. Transferencia de datos y DMA 222
10.3. Estandarizacion y extension de la entrada/salida:
buses y controladores 224
10.4. Otros dispositivos 227
10.5. Ejercicios oL 229

Tras ver en capitulos anteriores la funcién de la entrada/salida en
los ordenadores, asi como algunos de los dispositivos més cominmen-
te usados, este capitulo se va a dedicar a describir tanto la forma de
gestionar la entrada/salida por parte del procesador, como otros as-
pectos avanzados. En los primeros apartados se tratard la forma que
deben tener los programas para poder interactuar con los dispositivos
de entrada/salida. Se veran los mecanismos de consulta de estado y de
gestion mediante interrupciones como soluciones de sincronizacién, cada
una con sus ventajas e inconvenientes. Posteriormente se describira la
forma de transferir grandes cantidades de datos entre los dispositivos y
la memoria principal, utilizando el DMA (Direct Memory Access, Ac-
ceso Directo a Memoria) para liberar de esta tarea al procesador. Por
altimo, se comentara brevemente la necesidad de estandarizar la entra-
da/salida en los sistemas actuales, tanto a nivel de conexién fisica entre
el ordenador y los dispositivos, mediante buses estdndar, como a nivel

212

10.1. Gestion de la entrada/salida

213

de las partes del sistema operativo que los gestionan, los controladores
de dispositivos.

10.1. Gestién de la entrada/salida

Aunque como hemos visto existen dispositivos con tasas de trans-
ferencia muy distintas, en general los periféricos son mucho més lentos
que el procesador. Si un ordenador estd ejecutando un solo programa y
el flujo de ejecucion depende de las operaciones de entrada/salida, esto
no supondria un gran problema. El procesador puede esperar a que se
vayan produciendo cambios en los dispositivos que se relacionan con el
exterior, dado que su funcién consiste en ello. No es éste, sin embargo, el
caso general. En un ejemplo como el utilizado en capitulos anteriores, en
que el ordenador estd imprimiendo textos del usuario, no parece razona-
ble que aquél quede bloqueado esperando respuestas —senales de que el
trabajo en curso ha terminado o indicaciones de error— de la impreso-
ra. Estamos mas bien acostumbrados a seguir realizando cualquier otra
actividad con el ordenador mientras la impresora va terminando hoja
tras hoja sin percibir apenas disminucién en el rendimiento del sistema.

Asi pues, el aspecto fundamental de la gestion de la entrada/salida,
que intenta en lo posible evitar que el procesador preste atencion al dis-
positivo mientras no sea necesario, es la sincronizacion. Se pretende que
el procesador y los dispositivos se sincronicen de tal modo que aquél solo
les preste atenciéon cuando hay alguna actividad que realizar —recoger
datos si ya se han obtenido, enviar nuevos datos si se han consumido los
anteriores, solucionar algiin error o avisar al usuario de ello—.

10.1.1. Gestién de la entrada/salida mediante consulta
de estado

Sabemos que los registros de estado del controlador del dispositivo
sirven para este fin, indicar que se ha producido alguna circunstancia que
posiblemente requiere de atencién. Por lo tanto, la forma mas sencilla de
sincronizacién con el dispositivo, llamada consulta de estado, prueba de
estado o encuesta —en inglés, polling— consiste en que el procesador,
durante la ejecucion del programa en curso, lea de cuando en cuando los
registros de estado necesarios y, si advierte que el dispositivo requiere
atencion, pase a ejecutar el c6digo necesario para prestarla, posiblemente
contenido en una subrutina de gestion del dispositivo.

El cédigo que aparece a continuacion podria ser un ejemplo de con-
sulta de estado.

10_consulta_estado.s &
dr r7, =ST_IMPR @ Direccién del registro de estado

http://lorca.act.uji.es/libro/introARM2016/codigo/10_consulta_estado.s

o N O O oA W N

10.1. Gestion de la entrada/salida

214

ldr ré, =0x00000340 @ Mascara para diversos bits
ldr ro, [r7] @ Leemos el puerto

ands ro, ré @ y verificamos los bits
beq sigue @ Seguimos si no hay avisos
bl TRAT_IMPR @ Llamamos a la subrutina

sigue:
@ Continuamos sin prestar atencidn

En este ejemplo se consulta el registro de estado de una impresora y,
si alguno de los bits 6, 8 0 9 estd a 1, saltamos a una subrutina de trata-
miento para gestionar tal circunstancia. Posiblemente dicha rutina veria
cuales de los tres bits estan activos en el registro de estado, y empren-
deria las acciones correspondientes para gestionar esa circunstancia. Si
ninguno de los bits esta a 1, el procesador ignora la impresora y continia
con su programa.

Esta forma de gestionar la entrada/salida es muy sencilla, no anade
complejidad al procesador y puede usarse en todos los sistemas. En mu-
chos de ellos, si estéan dirigidos por eventos de entrada/salida —es decir,
si el flujo de ejecucién del programa se rige por acciones de entrada/sa-
lida y no por condiciones de datos— como ocurre en la mayor parte de
los sistemas empotrados, es la forma mas adecuada de sincronizarse con
la entrada/salida.

Sin embargo, para otros casos, sobre todo en los sistemas de propo-
sito general, esta forma de gestién presenta serios inconvenientes. Por
una parte, el procesador debe incluir instrucciones para verificar cada
cierto tiempo el estado del dispositivo. Esta verificacién consume tiempo
inutilmente si el dispositivo no requiere atenciéon. En un sistema con de-
cenas de dispositivos, la cantidad de tiempo perdida podria ser excesiva.
Por otra parte, al consultar el estado cada cierto tiempo, la latencia se
incrementa y se hace muy variable. Si un dispositivo activa un bit de
estado justo antes de que el procesador lea el registro, la latencia serd
minima. Sin embargo, si el bit se activa una vez se ha leido el regis-
tro, este cambio no serd detectado por el procesador hasta que vuelva
a realizar una consulta. De esta manera, si se desea garantizar una ba-
ja latencia, se ha de consultar a menudo el registro, lo que consumira
tiempo de forma inutil.

En este apartado hemos visto que la sincronizacién entre el procesa-
dor y los dispositivos es el punto clave de la gestién de la entrada/salida.
El procesador puede consultar de forma sencilla los bits de estado de un
dispositivo para ver si necesita atencion, gestionando la entrada/salida
mediante consulta de estado o encuesta.

10.1. Gestion de la entrada/salida

215

> 10.1 Sabiendo que el pulsador incorporado en la tarjeta de practicas
de laboratorio estd conectado a un pin del PIOB, ;jqué registro
deberiamos leer para comprobar si se ha presionado el pulsador?

> 10.2 El pin al que esta conectado el pulsador es el correspondiente al
bit 27 del PIOB. ;Qué méascara tenemos que aplicar al valor leido
del registro para desechar todos sus bits excepto el que indica el
estado del pulsador?

» 10.3 De acuerdo con el esquema de conexién del pulsador de la tarjeta
de précticas mostrado en la Figura 9.7 y si la entrada en que
se encuentra conectado el pulsador tiene activada la resistencia
interna de pull-up, jqué valor leido del bit 27 del registro de E/S
del PIOB (0 0 1) nos indicard que el pulsador esté presionado?

> 10.4 Abre el proyecto «pulsa» —en la carpeta «Pulsador» de la car-
peta «2. Consulta de estado» de la coleccién de ejercicios para
Arduino— y complétalo para que, mediante consulta de estado,
espere la pulsacion del pulsador de la tarjeta de practicas. Cuando
regrese, el programa debe devolver el CHIPID (cédigo de identifica-
cién del chip) del procesador.

10.1.2. Gestién de la entrada/salida mediante
interrupciones

A la vista de los problemas descritos, seria bueno que fuera el propio
dispositivo el que avisara al procesador en caso de necesitar su aten-
cién, sin que éste tuviera que hacer nada de forma activa. Dado que
el procesador es el encargado de gestionar todo el sistema, en tdltimo
término seria quien podria decidir qué dispositivos tienen permiso para
avisarle y si hacer o no caso a sus avisos una vez recibidos. Estas ideas
se recogen en el mecanismo de gestion de la entrada/salida mediante
interrupciones.

Segun esta idea, el mecanismo de gestion de entrada/salida median-
te interrupciones permite que cuando un dispositivo, con permisos para
ello, activa un aviso en sus registros de estado, provoque una senal eléc-
trica que fuerza al procesador, al terminar de ejecutar la instrucciéon en
curso, a saltar automaticamente al cédigo que permite gestionar el dis-
positivo. Cuando se completa este tratamiento, el procesador continia
ejecutando la instruccién siguiente a la que estaba ejecutando cuando
llegé la interrupcién, como si hubiera retornado de una subrutina —pe-
ro con més implicaciones que estudiaremos a continuacién—. El simil

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

10.1. Gestion de la entrada/salida

216

mas usado es el de la llamada telefénica, que llega mientras estamos le-
yendo tranquilamente un libro. Al sonar el teléfono —sefial de interrup-
cion— dejamos una marca en la pagina que estamos leyendo, y vamos
a atenderla. Al terminar, continuamos con la lectura donde la habiamos
dejado. De esta manera, los dispositivos son atendidos con muy poca
latencia y los programas de aplicacion no necesitan incluir instrucciones
de consulta ni preocuparse de la gestién de la entrada/salida.

10.1.3. Mecanismo de interrupciones en el procesador y
en el sistema

De las explicaciones anteriores se deduce que el mecanismo de in-
terrupciones se sustenta mediante el hardware del procesador y de la
entrada/salida. Efectivamente, no todos los procesadores estan disefia-
dos para poder gestionar interrupciones, aunque en realidad hoy en dia
solo los microcontroladores de muy bajo coste no lo permiten. Veamos
los elementos y procedimientos que necesitan incluir el procesador y
los dispositivos para que se pueda gestionar la entrada/salida mediante
interrupciones:

= Kl aviso le llega al procesador, como hemos dicho, mediante una
senal eléctrica. Esto requiere que el procesador —o su ntcleo,
en los procesadores y microcontroladores con dispositivos integra-
dos— disponga de una o varias lineas —pines o contactos eléctri-
cos— para recibir interrupciones. Estas lineas se suelen denominar
lineas de interrupcién o IRQn —de Interrupt Request, en in-
glés— donde la n indica el nimero en caso de haber varias. Los
controladores de los dispositivos capaces de generar interrupciones
han de poder a su vez generar estas sefales eléctricas, por lo que
también disponen de una —o varias en algunos casos— sefales
eléctricas de salida para enviarlas al procesador.

= El procesador, guiado por el codigo con el que ha sido programado,
es el gestor de todo el sistema. Asi pues, debe poder seleccionar qué
dispositivos tienen permiso para interrumpirlo y cudles no. Esto se
consigue mediante los bits de habilitacién de interrupciones.
Normalmente residen en registros de control de los controladores
de dispositivos, que tendran uno o mas, segin los tipos de interrup-
ciones que puedan generar. Ademads, el procesador dispone de uno
o varios bits de control propios para deshabilitar totalmente las
interrupciones, o hacerlo por grupos, segiin prioridades, etcétera.
Miés adelante explicaremos este aspecto con méas detalle.

s La arquitectura de un procesador especifica cémo debe responder
a la senalizaciéon de una interrupcién habilitada. La organizacion

10.1. Gestion de la entrada/salida

217

del procesador y sus circuitos deben permitir que, al acabar la eje-
cuciéon de una instruccién, se verifique si hay alguna interrupcion
pendiente y, en caso afirmativo, se cargue en el contador de pro-
grama la direccién de la primera instruccién del cédigo que debe
atenderla, lo que se conoce como rutina de tratamiento de la
interrupcién (RTI) o rutina de servicio de la interrupcion.
El procesador suele realizar mas acciones en respuesta, como el
cambio de estado a modo privilegiado o supervisor, el uso de otra
pila u otro conjunto de registros, la deshabilitacién automatica
de las interrupciones, etcétera. Todos estos cambios deben desha-
cerse al volver, para recuperar el estado en que se encontraba el
procesador al producirse la interrupciéon y poder continuar con el
codigo de aplicacién. Mas adelante se analizard con mas detalle el
comportamiento del procesador para tratar una interrupcién.

s El Ultimo mecanismo que debe proveer el hardware del procesa-
dor, segin lo especificado en su arquitectura, tiene que ver con la
obtencion de la direccién de inicio de la rutina de tratamiento de
la interrupcién, la direccién a la que saltar cuando se recibe una
interrupcién. Esta direccién, que puede ser tnica o dependiente
de la interrupcién en particular, recibe el nombre de vector de
interrupcién. En el caso méas sencillo hay una tnica linea TRQ
y un solo vector de interrupcién. La RTI debe entonces consultar
todos los dispositivos habilitados para determinar cudl o cudles de
ellos activaron sus bits de estado y deben por tanto ser atendi-
dos. En los casos méas complejos existen distintas interrupciones,
identificadas con un nimero de interrupcién diferente y asociadas
a un vector diferente. Para ello, el procesador debe tener diversas
lineas de interrupcién independientes o implementar un protoco-
lo especial de interrupcién en que, ademés de una senial eléctrica,
el dispositivo indica al procesador el niimero de interrupcién. En
este caso, cada causa de interrupcién puede tener su propia RTI,
o bien unos pocos dispositivos se agrupan en la misma, haciendo
mas rapida la consulta por parte de la RTI.

El mecanismo de interrupciones ha demostrado ser tan eficaz que se
ha generalizado mas alld de la entrada/salida en lo que se llama ex-
cepciones —ezceptions o traps, en inglés—. Una excepcién sirve para
sefialar cualquier circunstancia fuera de lo habitual —por lo tanto, ex-
cepcional— durante el funcionamiento de un procesador en su relacién
con el resto de componentes del ordenador. En este marco més amplio,
las interrupciones son excepciones generadas por los dispositivos de
entrada/salida. Otras excepciones se utilizan para senalar errores —ac-
cesos a memoria invalidos, violaciones de privilegio, divisién por cero,

10.1. Gestion de la entrada/salida

218

etcétera— que en muchos casos pueden ser tratados por el sistema y
dar lugar a extensiones tutiles. Por ejemplo, el uso del disco duro como
extensién de la memoria principal se implementa mediante la excepcién
de fallo de pagina; las excepciones de coprocesador no presente permiten
incorporar emuladores al sistema, como la unidad en coma flotante emu-
lada en los antiguos PC. Entre las excepciones se incluyen también las
generadas voluntariamente por software mediante instrucciones especifi-
cas o registros a tal efecto de la arquitectura, que al provocar un cambio
al modo de ejecucién privilegiado, permiten implementar las llamadas
al sistema como se vera al estudiar sistemas operativos.

Asi pues, las interrupciones son, en la mayoria de los procesadores,
un tipo de excepciones asociadas a los dispositivos de entrada/salida y
su gestion. Una diferencia fundamental con el resto de excepciones radi-
ca en el hecho de que las interrupciones no se generan con la ejecuciéon
de ninguna instruccién —un acceso a memoria incorrecto se genera eje-
cutando una instruccién de acceso a memoria; una divisiéon por cero al
ejecutar una instruccién de division— por lo que son totalmente asin-
cronas con la ejecucién de los programas y no tienen ninguna relacién
temporal con ellos que pueda ser conocida a priori.

Vamos a describir con méas detalle todos los conceptos sobre inte-
rrupciones expuestos mas arriba. Para ello, recorreremos las sucesivas
fases relacionadas con las interrupciones en la implementacién y ejecu-
cién de un sistema, comentando exclusivamente los aspectos pertinentes
a este tema.

El uso de interrupciones para la gestion de la entrada/salida se debe
tener en cuenta desde el diseno del hardware del sistema. El procesa-
dor seleccionado debera ser capaz de gestionarlas y contar, por tanto,
con una o varias lineas externas de interrupcién. Es posible ademés que
utilice interrupciones vectorizadas y el nimero de interrupcién —aso-
ciado al vector— se entregue al sefialarla mediante cierto protocolo de
comunicacién especifico. En este caso, habrd que anadir al sistema al-
gin controlador de interrupciones. Estos dispositivos suelen ampliar
el nimero de lineas de interrupcion del sistema para conectar diversos
dispositivos y se encargan de propagar al procesador las senales en ta-
les lineas, enviando ademas el ntimero de interrupciéon correspondiente.
Desde el punto de vista del procesador, el controlador de interrupciones
funciona como un sencillo dispositivo de entrada/salida. Ejemplos de
estos dispositivos son el NVIC utilizado en la arquitectura ARM y que
se vera mas adelante o el 8259A asociado a los procesadores Intel x86.
En estos controladores se puede programar el nimero de interrupciéon
asociado a cada linea fisica, la prioridad, las méscaras de habilitacién y
algtin otro aspecto relacionado con el comportamiento eléctrico de las
interrupciones.

Es interesante comentar que una interrupcién puede senialarse eléc-

10.1. Gestion de la entrada/salida

219

tricamente mediante flanco o nivel. En el primer caso, una transicién de
estado bajo a alto o viceversa en la sefial eléctrica provoca que se detecte
la activaciéon de una interrupciéon. En el segundo caso, es el propio nivel
légico presente en la linea, 1 o 0, el que provoca la deteccion. Existe una
diferencia fundamental en el comportamiento de ambas opciones, que
tiene repercusion en la forma de tratar las interrupciones. Un flanco es
un evento Unico y discreto, no tiene duracién real, mientras que un nivel
eléctrico se puede mantener todo el tiempo que sea necesario. Asi pues,
un dispositivo que genera un flanco, ha mandado un aviso al procesador
y posiblemente no esté en disposicion de mandar otro mientras no sea
atendido. Un dispositivo que genera una interrupcién por nivel, continia
generandola hasta que no sea atendido y se elimine la causa que provoco
la interrupcién. Asi, una rutina de tratamiento de interrupciones debe
verificar que atiende todas las interrupciones pendientes, tratando ade-
cuadamente los dispositivos que las senalaron. De esta manera se evita
perder las que se sefialan por flanco y se dejan de senalar las que lo
hacen por nivel. Mas adelante, al comentar las RTI, volveremos a tratar
esta circunstancia. Los dispositivos capaces de generar interrupciones
deberan tener sus lineas de salida de interrupcion conectadas a la entra-
da correspondiente del procesador o del controlador de interrupciones,
y por supuesto, tener sus registros accesibles en el mapa de memoria o
de entrada/salida mediante la légica de decodificacién del sistema.
Una vez disefiado el hardware hay que programar el codigo de las di-
versas RTI y configurar los vectores de interrupcion para que se produz-
can las llamadas adecuadamente. Las direcciones de los vectores suelen
estar fijas en el mapa de memoria del procesador, es decir en su arqui-
tectura, de forma que a cada ntimero de interrupcién le corresponde una
direccién de vector determinada. Algunos sistemas permiten configurar
el origen de la tabla de vectores de interrupcién, entonces la afirmacién
expuesta antes hace referencia, no al valor absoluto del vector, sino a
su desplazamiento con respecto al origen. Sea como sea, los vectores de
interrupcién suelen reservar una zona de memoria de tamano fijo —y
reducido— en la que no hay espacio para el cédigo de las RTI. Para
poder ubicar entonces el cdédigo de tratamiento con libertad en la zo-
na de memoria que se decida al disenar el software del sistema, y con
espacio suficiente, se utilizan dos técnicas. La méas sencilla consiste en
dejar entre cada dos vectores de interrupcion el espacio suficiente para
una instruccion de salto absoluto. Asi pues, al llegar la interrupcion se
cargard el PC con la direccién del vector y se ejecutara la instruccion
de salto que nos llevard al cédigo de la RTI en la direccion deseada.
La segunda opcién requiere mas complejidad para el hardware del pro-
cesador. En este caso, en la direcciéon del vector se guarda la direcciéon
de inicio de la RTI, usando una especie de direccionamiento indirecto.
Cuando se produce la interrupcién, lo que copiamos en el PC no es la

10.1. Gestion de la entrada/salida

220

direccién del vector, sino la direccion contenida en el vector, lo que otor-
ga al sistema flexibilidad para ubicar las RTI libremente en memoria.
Esta ultima opcién es la utilizada en las arquitecturas ARM e Intel de
32 y 64 bits.

Las dos etapas explicadas tienen lugar durante el disefio del sistema
y estan ya realizadas antes de que éste funcione. El hardware del sistema
y el codigo en ROM ya estan dispuestos cuando ponemos el ordenador en
funcionamiento. La siguiente etapa es la configuracién del sistema, que
se realiza una vez al arrancar, antes de que comience el funcionamiento
normal de las aplicaciones. Esta fase es sencilla y conlleva inicamente la
asignacién de prioridades a las interrupciones y la habilitacién de aqué-
llas que deban ser tratadas. Por supuesto, en sistemas complejos pueden
cambiarse de forma dindmica ambas cosas, segiin las circunstancias del
uso o de la ejecucion, aunque es normal que se realice al menos una
configuracién bésica inicial. Es conveniente aprovechar esta descripcion
para comentar algo mas sobre la prioridad de las interrupciones. En un
sistema pueden existir numerosas causas de interrupcién y es normal
que algunas requieran un tratamiento mucho mas inmediato que otras.
En un teléfono movil inteligente es mucho mas prioritario decodificar un
paquete de voz incorporado en un mensaje de radiofrecuencia durante
una conversacion telefénica que responder a un cambio en la orienta-
cion del aparato. Como las interrupciones pueden coincidir en lapsos
temporales pequenos, es necesario aportar mecanismos que establezcan
prioridades entre ellas. De esta manera, si llegan varias interrupciones al
mismo tiempo el sistema atenderd exclusivamente a la més prioritaria.
Ademas, durante una RTT es normal que se mantengan deshabilitadas
las interrupciones de prioridad inferior a la que se estd tratando. Para
ello el sistema debe ser capaz de asignar una prioridad a cada interrup-
cién o grupo de ellas; esto se asocia normalmente, igual que el vector,
al nimero de interrupciéon o a la linea fisica. Una consecuencia de la
priorizaciéon de interrupciones es que las rutinas de tratamiento suelen
concluir revisando las posibles interrupciones pendientes, que se hayan
producido mientras se trataba la primera. De esta manera no se pierden
interrupciones por una parte y se evita por otra que nada més volver
de una RTT se senale otra que hubiera quedado pendiente, con la con-
siguiente pérdida de tiempo. Cuando varios dispositivos comparten el
mismo nimero y vector de interrupcién, entonces la priorizacién entre
ellas se realiza en el software de tratamiento, mediante el orden en que
verifica los bits de estado de los distintos dispositivos.

Una vez el sistema estd en funcionamiento, ya configurado, las in-
terrupciones pueden llegar de forma asincrona con la ejecuciéon de ins-
trucciones. En este caso, el procesador, al terminar la instruccién en
curso, de alguna de las formas vistas, carga en el contador de programa
la direccién de la RTI. Previamente debe haber guardado el valor que

10.1. Gestion de la entrada/salida

221

contenia el contador de programa para poder retornar a la instruccién
siguiente a la que fue interrumpida. Al mismo tiempo, se produce un
cambio a modo de funcionamiento privilegiado —por supuesto, solo en
aquellos procesadores que disponen de varios modos de ejecucion— y
se deshabilitan las interrupciones. Bajo estas circunstancias comienza la
ejecuciéon de la RTT.

Dado que una interrupcién puede ocurrir en cualquier momento, es
necesario guardar el estado del procesador —registros— que vaya a ser
modificado por la RTI, lo que suele hacerse en la pila. Si la rutina ha-
bilita las interrupciones para poder dar paso a otras més prioritarias,
debera preservar también la copia del contador de programa guardada
por el sistema —que frecuentemente se almacena en un registro especial
del sistema—. Posteriormente, la rutina de servicio tratard el dispositivo
de la forma adecuada, normalmente intentando invertir el menor tiempo
posible. Una vez terminado el tratamiento, la rutina recuperara el valor
de los registros modificados y recuperard el contador de programa de
la instruccién de retorno mediante una instruccién especial —mormal-
mente de retorno de excepcién— que devuelva al procesador al modo de
ejecucién original.

En algunos sistemas, disenados para tratar las excepciones de forma
especialmente eficiente, todos los cambios de estado y de preservacion de
los registros comentados se realizan de forma automaética por el hardware
del sistema, que dispone de un banco de registros de respaldo para no
modificar los de usuario durante la RTI. Este es el caso de la arquitectura
ARM, en que una rutina de tratamiento de interrupcién se comporta a
nivel de programa préacticamente igual que una subrutina.

En este apartado hemos visto que si el procesador incorpora el hard-
ware necesario, puede ser el dispositivo el que le avise de que necesita
su atencion, mediante interrupciones. En este mecanismo, el procesador
debe incorporar mas complejidad en sus circuitos, pero los programas
pueden disenarse de forma independiente de la entrada/salida. Para la
gestion de excepciones, que generaliza e incluye la de interrupciones, el
procesador debe ser capaz de interrumpir la ejecucién de la instrucciéon
en curso y de volver a la siguiente una vez terminado el tratamiento; de
saber dénde comienza la rutina de servicio RTT mediante vectores; de
establecer prioridades entre aquéllas y de preservar el estado para poder
continuar la ejecucién donde se quedé al llegar la interrupcion.

> 10.5 En el proyecto «PIO0int» —en la carpeta «3. Interrupcionesy
de la coleccion de ejercicios para Arduino—, completa la funcién
«PIOsetupInty» para que configure adecuadamente el modo de in-
terrupcién seleccionado por los pardametros que se le suministran.

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

10.2. Transferencia de datos y DMA

222

Una vez completada, comprueba que funciona correctamente com-
pilando y subiendo el programa a la tarjeta Arduino Due.

10.2. Transferencia de datos y DMA

La transferencia de datos entre el procesador y los dispositivos se
realiza, como se ha visto, a través de los registros de datos. En el ca-
so de un teclado, un ratén u otros dispositivos con una productividad
de pocos bytes por segundo, no es ningin problema que el procesador
transfiera los datos del dispositivo a la memoria, para procesarlos mas
adelante. De esta forma, se liberan los registros de datos del dispositivo
para que pueda registrar nuevas pulsaciones de teclas o movimientos y
clicks del raton por parte del usuario. Esta forma sencilla de movimiento
de datos, que se adapta a la estructura de un computador vista hasta
ahora, se denomina transferencia de datos por programa. En ella,
el procesador ejecuta instrucciones de lectura del dispositivo y escritu-
ra en memoria para ir transfiriendo uno a uno los datos disponibles.
Anidlogamente, si se quisiera enviar datos a un dispositivo, se realizarian
lecturas de la memoria y escrituras en sus registros de datos para cada
uno de los datos a enviar.

Consideremos ahora que la aplicacion que se quiere ejecutar con-
siste en la reproduccién de una pelicula almacenada en el disco duro.
En este caso, el procesador debe ir leyendo bloques de datos del disco,
decodificdndolos de la forma adecuada y enviando por separado —en
general— informacién a la tarjeta grafica y a la tarjeta de sonido. To-
dos los bloques tratados son ahora de gran tamano, y el procesador
no debe tnicamente copiarlos del dispositivo a la memoria o viceversa,
sino también decodificarlos, extrayendo por separado el audio y el video,
descomprimiéndolos y enviandolos a los dispositivos adecuados. Y todo
ello en tiempo real, generando y enviando no menos de 24 imégenes de
unos 6 megabytes y unos 25 kilobytes de audio por segundo. Un proce-
sador actual de potencia media o alta es capaz de realizar estas acciones
sin problemas, en el tiempo adecuado, pero buena parte del tiempo lo
invertiria en mover datos desde el disco a la memoria y de ésta a los
dispositivos de salida, sin poder realizar trabajo méas productivo. En un
sistema multitarea, con muchas aplicaciones compitiendo por el uso del
procesador y posiblemente también leyendo y escribiendo archivos en
los discos, parece una pérdida de tiempo de la CPU dedicarla a estas
transferencias de bloques de datos. Para solucionar este problema y li-
berar al procesador de la copia de grandes bloques de datos, se ided
una técnica llamada acceso directo a memoria, o DMA —Direct
Memory Access, en inglés— en la que un dispositivo especializado del

10.2. Transferencia de datos y DMA

223

sistema, llamado controlador de DMA, se encarga de realizar dichos
movimientos de datos.

El controlador de DMA es capaz de copiar datos desde un disposi-
tivo de entrada/salida a la memoria o de la memoria a los dispositivos
de entrada/salida. Hoy en dia es frecuente que también sean capaces de
transferir datos entre distintas zonas de memoria o de unos dispositivos
de entrada/salida a otros. Recordemos que el procesador sigue siendo
el gestor de todo el sistema, en particular de los buses a través de los
cuales se transfieren datos entre los distintos componentes: memoria y
entrada/salida. Por ello, los controladores de DMA deben ser capaces
de actuar como maestros de los buses necesarios, para solicitar su uso y
participar activamente en los procesos de arbitraje necesarios. Por otra
parte, para que el uso del DMA sea realmente eficaz, el procesador de-
be tener acceso a los recursos necesarios para poder seguir ejecutando
instrucciones y no quedarse en espera al no poder acceder a los buses.
Aunque no vamos a entrar en detalle, existen técnicas tradicionales como
el robo de ciclos, que permiten compaginar sin demasiada sobrecarga
los accesos al bus del procesador y del controlador de DMA. Hoy en
dia, sin embargo, la presencia de memorias caché y el uso de sistemas
complejos de buses independientes, hace que el procesador y los contro-
ladores de DMA puedan realizar accesos simultdneos a los recursos sin
demasiados conflictos utilizando técnicas mas directas de acceso a los
buses.

Desde el punto de vista del procesador, el controlador de DMA es un
dispositivo més de entrada/salida. Cada controlador dispone de varios
canales de DMA, que se encargan de realizar copias simultdneas entre
parejas de dispositivos. Cada canal se describe mediante un conjunto de
registros de control que indican los dispositivos de origen y de destino,
las direcciones de inicio de los bloques de datos correspondientes y la
cantidad de datos a copiar. Tras la realizacién de las copias de datos el
controlador indica el resultado —erréneo o correcto— mediante registros
de estado, siendo también capaz de generar interrupciones.

Los controladores de DMA actuales son muy potentes y versatiles.
Es normal que puedan comunicarse mediante los protocolos adecuados
con ciertos dispositivos de entrada/salida para esperar a que haya datos
disponibles y copiarlos luego en memoria hasta llenar el nimero de datos
programado. Esto por ejemplo liberaria al procesador de tener que leer
los datos uno a uno de un conversor analdgico-digital, ahorrandose los
tiempos de espera inherentes a la conversién. También es frecuente que
puedan encadenar multiples transferencias separadas en una sola orden
del procesador, mediante estructuras de datos enlazadas que residen en
memoria. Cada una de estas estructuras contiene la direccién de origen,
de destino, el tamafio a copiar y la direccién de la siguiente estructura.
De esta manera se pueden leer datos de diversos buffers de un disposi-

10.3. Estandarizacion y extensién de la entrada/salida: buses y controladores

224

tivo y copiarlos en otros tantos pertenecientes a distintas aplicaciones,
respondiendo asi a una serie de llamadas al sistema desde diferentes
clientes.

En este apartado se ha descrito la transferencia de datos por progra-
ma, que es la forma mas sencilla de copiar datos entre los dispositivos
de entrada/salida y la memoria, ejecutando las correspondientes instruc-
ciones de lectura y escritura por parte del procesador. Se ha descrito el
acceso directo a memoria como otra forma de transferir datos que libera
de esa tarea al procesador, y se han comentado las caracteristicas de los
dispositivos necesarios para tal técnica, los controladores de DMA.

> 10.6 Abre el proyecto «testDMA» —en la carpeta «4. DMA, PWM
y USB» de la coleccién de ejercicios para Arduino—, compilalo y
subelo a la tarjeta Arduino Due. Observa en el funcionamiento del
programa que el contador de iteraciones se incrementa al mismo
tiempo que el DMA realiza las transferencias de datos.

> 10.7 Busca en el codigo del programa el grupo de lineas encerrado
en el comentario «TAMANO DE LOS BLOQUES A TRANSFERIR» y prue-
ba diferentes valores de los pardmetros «SIZEO», «SIZE1», «SIZE2»
y «SIZE3». Ten en cuenta que deben tener valores comprendidos
entre 100 y 2048. Explica como cambia el tiempo de ejecucién en
funcién de dichos valores.

> 10.8 ;Para qué valores de los parametros se obtiene el tiempo maximo
de realizacion de las transferencias?;De qué tiempo se trata?;Qué
valor ha alcanzado el contador de iteraciones para dicho tiempo
maximo?

10.3. Estandarizacién y extension de la
entrada/salida: buses y controladores

La entrada/salida es un componente indispensable en los ordena-
dores porque permite que se comuniquen con el mundo exterior. La
tendencia actual de los sistemas informaticos es que cada vez estén mas
orientados a la entrada/salida: el concepto de dispositivos conectados
o internet de las cosas implica disponer de pequenos ordenadores em-
potrados con capacidad de comunicacién —entrada/salida— que estén
constantemente midiendo datos a través de un conjunto de sensores y
realizando actuaciones sobre el sistema al que estdn unidos. De nuevo,

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

10.3. Estandarizacion y extensién de la entrada/salida: buses y controladores

225

entrada/salida. Pero esta tendencia se descubre también en los ordena-
dores personales: su disposicion para el ocio, la reproduccion multimedia
y grafica hace que estén conectados de forma habitual a mandos de jue-
go, subsistemas de audio, impresoras, tabletas digitalizadoras, etcétera.
De esta manera, tanto los sistemas empotrados como los ordenadores
personales en la actualidad deben comunicarse con una gran cantidad
de dispositivos de entrada/salida. Y la tendencia es que todo esto au-
mente en el futuro.

En estas circunstancias no es viable que cada nuevo dispositivo re-
quiera de una conexion propia al bus del sistema —el que conecta el
procesador con la memoria principal, en una visién simplificada de los
ordenadores— que ademas se encuentre en el interior del propio ordena-
dor. Por otra parte, llevar al exterior este bus supone problemas tanto
mecéanicos como electrénicos que, si bien es cierto que se pueden resol-
ver, siempre presentan un elevado coste en la productividad del bus vy,
sobre todo, en el coste de los dispositivos y conectores. Por todo esto,
la solucién ha sido, desde hace anos, desarrollar buses especificos pa-
ra la entrada salida que permitan conectar dispositivos al ordenador a
través de estos buses. El compromiso de diseno para estos buses de en-
trada/salida es que sean econdémicos y presenten a la vez unas buenas
prestaciones. En el mundo de los ordenadores personales el bus que ha
ganado casi en exclusividad el mercado es el Universal Serial Bus o
USB, en sus diferentes versiones. En el mundo de los microcontrolado-
res y los sistemas empotrados se utilizan indistintamente el bus SPI y
el bus I12C.

Cuando se utiliza un bus de entrada/salida en un sistema, los disposi-
tivos conectados al bus dejan de exisitir como tales para la arquitectura:
una impresora USB, un disco duro USB, no pueden generar interrup-
ciones al procesador —;como activan una linea de interrupcién, si estan
conectados a cinco metros y a través de un cable USB estandar?— ni
transferir datos mediante DMA. A nivel del procesador, al nivel que he-
mos tratado en estos temas, el tnico dispositivo de entrada/salida para
el procesador es el controlador raiz USB o HOST. Se trata en este caso
de un dispositivo que si se conecta al bus del sistema —el PCI express
en los PC actuales— y que si genera interrupciones y permite transfe-
rencias mediante DMA. Pero nuestro procesador, en un primer nivel,
solo se comunica con este dispositivo HOST que se encarga de enviar
y recibir bloques de datos para implementar la comunicaciéon con cada
dispositivo y el propio protocolo que sustenta los niveles 16gicos del bus
USB.

El sistema de entrada/salida es mucho mas complejo en un ordenador
real de lo que podemos ver en este libro introductorio. Cada dispositivo
de entrada/salida no solo es gestionado a bajo nivel, sino que ademés re-
quiere de una serie de reglas de comunicacién especificas a otros niveles

10.3. Estandarizacion y extensién de la entrada/salida: buses y controladores

226

que estandarizan, por ejemplo, la forma de comunicarse con los disposi-
tivos de almacenamiento o de interfaz humana —mediante el estandar
HID, en inglés Human Interface Device— como teclados, ratones, man-
dos de juego, etcétera. En un sistema real toda la comunicacién con los
dispositivos forma parte de lo que se conoce como controladores de
dispositivos, que son médulos del sistema operativo que utilizan las
mencionadas reglas para permitir que la comunicacién con los disposi-
tivos sea adecuada. Los sistemas operativos actuales tienen en cuenta
tanto la diversidad como la estandarizacién de la entrada/salida, de for-
ma que los controladores de dispositivos se estructuran en niveles, y
permiten gestionar adecuadamente todos los casos. Un ratén USB y un
raton Bluetooth utilizaran el mismo manejador de alto nivel que entien-
da el conjunto estdndar de reglas HID. Este coltrolador se comunicaré,
segun el caso, con otro de mas bajo nivel que permita la comunicacién
fisica con el dispositivo a través del bus USB mediante el dispositivo
HOST o Bluetooth utilizando el dispositivo de comunicaciones inalam-
bricas. En la realidad, para cada dispositivo pueden utilizarse tres o mas
controladores jerarquizados que terminan permitiendo, de forma eficaz,
la comunicacién entre el ordenador y el dispositivo.

En este apartado hemos visto como la entrada/salida estd cada vez
mas presente en los sistemas actuales y esta tendencia sigue creciendo.
Por ello es necesario utilizar buses estdndar, como el USB en los PC
o los SPI e 12C en otros sistemas empotrados, para comunicarse con
los dispositivos. Esta complejidad fisica lleva a una complejidad en la
gestion que los sistemas operativos resuelven mediante jerarquias de
manejadores que gestionan tanto la diversidad como la estandarizacion.

> 10.9 Abre el proyecto «kbmouse» —en la carpeta «4. DMA, PWM
y USB» de la coleccion de ejercicios para Arduino—, compilalo y
sibelo a la tarjeta Arduino Due. Abre un editor de textos. Des-
conecta el cable USB del puerto de programacion de la tarjeta
Arduino Due y conéctalo al puerto de comunicaciones. Describe el
funcionamiento del programa.

> 10.10 Consulta la ayuda de Arduino y modifica el programa para que
simule un doble click en el instante en que se presiona el pulsador
de la tarjeta Arduino Due. Presiona el pulsador cuando el puntero
se encuentre sobre un icono del escritorio. ;Qué ocurre?

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

10.4. Otros dispositivos

227

10.4. Otros dispositivos

El uso extendido de los microprocesadores para la automatizacion y
control de todo tipo de maquinas, electrodomésticos, dispositivos mul-
timedia, herramientas, etc., ha dado lugar a un tipo especifico de mi-
croprocesador, denominado microcontrolador, que se caracteriza prin-
cipalmente por incorporar dispositivos periféricos con el propésito de
simplificar su uso como controlador maestro de un sistema empotrado
(computador de uso especifico integrado en un dispositivo como los an-
teriormente nombrados).

La variedad de dispositivos integrados en un microcontrolador es
enorme, tanto mas cuanto mas especifico es el microcontolador, aunque
habitualmente suelen poder agruparse en dispositivos de gestién de las
comunicaciones, dispositivos de gestiéon del almacenamiento y dispositi-
vos de interaccién con el mundo exterior. Dado que los microprocesado-
res trabajan exclusivamente con informacién digital (bits, bytes, words)
y nuestro mundo es analégico (presenta magnitudes continuas como la
longitud, peso, potencial eléctrico, intensidad luminosa, etc.), existe la
necesidad de convertir un tipo de informacién en otra, en un par de
procesos que se denominan Conversién Analégica/Digital (A/D) y
Conversién Digital/Analégica (D/A) respectivamente, que la ma-
yoria de microcontroladores incorporan como dispositivos integrados.

Uno de los métodos méas simples que existe para la conversiéon D/A
(la que consiste en producir una senial analdgica a partir de un valor nu-
mérico digital) es el denominado Modulacién de Anchura de Pulso
o PWM (Pulse Width Modulation, en inglés). Consiste en generar una
senial cuadrada de periodo —tiempo entre dos flancos de subida o de
bajada consecutivos— fijo y ciclo de trabajo —tiempo que la senal per-
manece a nivel alto — variable. De esta forma se transmite una cantidad
de energia variable que un filtro pasa-bajo o LPF (Low Pass Filter, en
inglés) —dispositivo electrénico que deja pasar bajas frecuencias y eli-
mina las altas frecuencias— se encarga de convertir en un voltaje estable
proporcional a dicha cantidad de energia, como muestra la Figura 10.1.

» 10.11 Consulta en la ayuda de Arduino el funcionamiento de la fun-
cién «analogWrite()» y, al final de la misma, pincha en el enlace
«Tutorial:PwM». ;Como se consigue variar la intensidad luminosa
del LED mediante la técnica PWM?

> 10.12 Abre el proyecto «pwm» —en la carpeta «4. DMA, PWM vy
USB» de la coleccién de ejercicios para Arduino—, compilalo y
stubelo a la tarjeta Arduino Due.

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

10.4. Otros dispositivos 228

Generador funciones Filtro Voltimetro

Figura 10.1: Método PWM para conversién Digital/Analégico

> 10.13 Observa que con cada pulsaciéon cambia la intensidad del LED
rojo mientras se indica el valor del ciclo de trabajo (Duty Cy-
cle) que provoca la intensidad observada. Explica qué relacion hay
entre el valor del registro PWM Channel Duty Cycle Register y la
intensidad del LED.

10.5. Ejercicios

229

10.5. Ejercicios

> 10.14 Modifica el proyecto «pulsa» —en la carpeta «Pulsador» de la
carpeta «2. Consulta de estado» de la coleccién de ejercicios para
Arduino— que has completado en el Ejercicio 10.4 para que espere
hasta que se haya soltado el pulsador tras haberlo presionado antes
de regresar al programa principal.

> 10.15 Modifica el cédigo del proyecto «PI0int» —en la carpeta «3.
Interrupciones» de la coleccion de ejercicios para Arduino— que
has completado en el Ejercicio 10.5 para ir probando todas las
posibles combinaciones de los parametros «mode» y «polarity».
Completa la siguiente tabla, comentando en cada caso cudl es el
comportamiento del programa.

Mode Polarity Efecto

FLANCO BAJO
ALTO

NIVEL BAJO
ALTO

CAMBIO BAJO
ALTO

> 10.16 Abre el proyecto «pwm» —en la carpeta «4. DMA, PWM vy
USB» de la coleccién de ejercicios para Arduino—, compilalo y
subelo a la tarjeta Arduino Due. Desplaza la tarjeta con suavidad
describiendo un arco de unos 60 centimetros a una velocidad mode-
rada y observa el patron que se visualiza para los diferentes valores
del contenido del registro PWM Channel Duty Cycle Register. Ex-
plica como estos patrones obedecen al principio de funcionamiento
del PWM visto en el tutorial de Arduino.

10.5.1. Ejercicios de nivel medio

> 10.17 Para poder modificar los contenidos de los registros de fecha
—RTC_CALR— y hora —RTC_TIMR— es preciso detener su actuali-
zacién escribiendo un 1 en los bits UPDCAL y UPDTIM del registro de
control RTC_CR y esperando la confirmacién de que se ha detenido la
actualizacion en el bit ACKUPD del registro de estado RTC_SR. Puedes
consultar los detalles de este procedimiento en el apartado A.4.4
Actualizacion de la fecha y hora actuales. Completa el proyecto

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

10.5. Ejercicios

230

«cambiahora» para configurar el RTC en el modo de 12 horas con
la fecha y hora actuales. Haz que el programa compruebe los va-
lores de los bits NVCAL y NVTIM para confirmar que la configuracién
ha sido correcta.

> 10.18 Completa en el proyecto «RTCint» —en la carpeta «3. Interrup-
ciones» de la coleccion de ejercicios para Arduino—, los valores de
las etiquetas «HOY» y «AHORA» para configurar el RT'C con la fecha
y hora indicadas en los comentarios de las lineas de cddigo que
asignan valor a dichas etiquetas.

> 10.19 Completa asimismo los valores de las etiquetas «ALR_FECHA» y
«ALR_HORA» para configurar la alarma del RTC de forma que se
active a la fecha y hora indicadas en los comentarios de las lineas
de codigo que asignan valor a dichas etiquetas.

> 10.20 Abre el proyecto «pwm» —en la carpeta «4. DMA, PWM vy
USB» de la coleccién de ejercicios para Arduino—, compilalo y
sibelo a la tarjeta Arduino Due. Cambia el valor actual de la eti-
queta «CLK» (0x00000680) por 0x00000180. Repite el experimento
del Ejercicio 10.16 y comenta las diferencias apreciadas. ;Qué crees
que ha cambiado?

10.5.2. Ejercicios de nivel avanzado

> 10.21 Partiendo del proyecto «alblink» —en la carpeta «RTC» de
la carpeta «2. Consulta de estado» de la coleccion de ejercicios
para Arduino—, configura una alarma que se active dentro de 8
segundos. Completa el codigo proporcionado para que consulte el
estado del bit de alarma y espere a que ésta se produzca para
regresar al programa en C, el cual mostrara el instante en que se
detect6 la activacion de la alarma. Ten en cuenta que tienes que
copiar la funcién cambiahora confeccionada en el apartado anterior
en la zona indicada del codigo fuente proporcionado.

> 10.22 Modifica el periodo del parpadeo del LED para que sea de 6
segundos (3000 ms encendido y 3000 ms apagado). ;Coincide el
instante de deteccién de la alarma con el configurado?; A qué crees
que es debido?

> 10.23 Completa la funcién «RTCsetAlarm» de forma que configure
adecuadamente la fecha y hora de activacion de la alarma conte-
nidas en las etiquetas «ALR_FECHA» y «ALR_HORA» y que active la
generacién de interrupciones de alarma por parte del RTC.

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

10.5. Ejercicios

231

> 10.24 Completa en el proyecto anterior la funcién «RTC_Handler» pa-
ra que atienda la interrupcién de alarma del RTC realizando co-
rrectamente las acciones que se describen en los comentarios del
c6digo proporcionado. Una vez completada la funcién, compila y
sube el programa a la tarjeta Arduino Due. Explica qué acciones
realiza.

> 10.25 Prueba diferentes valores de la etiqueta. «RETARDO», comprueba
su efecto en el comportamiento del programa y compéralo con el
obtenido con el programa «alblink» del ejercicio 10.21. Comenta
las diferencias observadas y relaciénalas con los métodos de con-
sulta de estado e interrupciones.

> 10.26 Abre el proyecto «EjemploPWM» —en la carpeta «4. DMA, PWM
y USB» de la coleccion de ejercicios para Arduino—, compilalo y

sibelo a la tarjeta Arduino Due. ;Cémo se consiguen los diferentes
colores en el LED RGB?

> 10.27 Prueba diferentes valores de « FACTRED», « FACTGRN» y « FACTBLU».

. Qué efecto tienen estos parametros en el comportamiento del pro-
grama?

10.5.3. Ejercicios adicionales

> 10.28 Completa el proyecto «cambia» —en la carpeta «Pulsadory
de la carpeta «2. Consulta de estado» de la coleccion de ejercicios
para Arduino—, para que con cada pulsacién del pulsador encienda
ciclicamente el LED RGB con cada uno de sus tres colores basicos.

> 10.29 Modifica el proyecto «kbmouse» —en la carpeta «4. DMA,
PWM y USB» de la coleccién de ejercicios para Arduino— pa-
ra que, en lugar de una elipse, el puntero del ratén describa un
rectangulo.

ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz
ftp://lorca.act.uji.es/arduino-uji/ejercicios_arduino_2016.tgz

indice

APENDICE

Informacion técnica
ATSAM3XSE

A.l.
A2.

GPIO en el Atmel ATSAM3XSE 232
La tarjeta de entrada/salida 239

A.3. El temporizador del Atmel ATSAM3XS8E y del sis-

tema Arduino oL 240
A.4. El reloj en tiempo real del Atmel ATSAM3XS8E 243
A.5. El Temporizador en Tiempo Real (RTT) del Atmel
ATSAMBXS8Eo 255
A.6. Gestion de excepciones e interrupciones en el AT-
....................... 257
A.7. El controlador de DMA del ATSAM3X8E 263

En el presente anexo se recoge informacién técnica detallada sobre
algunos de los dispositivos del microcontrolador ATSAM3XS8E de la tar-
jeta Arduino Due, sobre la propia Arduino Due y sobre la tarjeta de
expansion. Se describe con detalle el funcionamiento de la GPIO y los
dispositivos de temporizacién; la gestiéon de las interrupciones y el con-
trolador NVIC; y, por tltimo, se describe brevemente el funcionamiento
del controlador de DMA en el ATSAM3XSE.

A.1. GPIO en el Atmel ATSAM3XSE

El microcontrolador ATSAM3XS8E dispone de bloques de GPTIO muy
versatiles y potentes. Dichos bloques, llamados Parallel Input/Output

232

A.1. GPIO en el Atmel ATSAM3XS8E

233

Controller (PIO en inglés) se describen en detalle a partir de la pagi-
na 641 del manual. Vamos a resumir en este apartado los aspectos mas
importantes, centrandonos en la version ATSAM3X8E del microcontro-
lador, presente en la tarjeta Arduino Due. En la Figura A.1 (obtenida
del manual [Atm12]) se muestra la estructura interna de un pin de E/S
del microcontrolador ATSAM3XS8E.

PIO_OER[0]

PIO_PUER(0)] T
PIO_ODR[0] PIO_PUSR[0] ES
PIO_PUDR[(]
Peripheral A
Output Enable 0
Peripheral B 1 M
Output Enable =
PIO_PER[0]
PIO_ABSR[0] | | PIo_PsR[0] 1
[0 rorm | EENEET
Peripheral A _ PDR[0] PIO_MDER(0]
Output 0 PIO_MDSRI0]
PIO_MDDR(0]
Peripheral B 1 b
Output PIO_SODR[0]
PIO_ODSR[0] '
PIO_CODR[0] —
. v
<
Peripheral A
Input
Peripheral B
Input
PIO_PDSR[0]
PIO_ISR[0]
EVENT (Up ta 32 possible inputs)
System Clock Programmabl DETECTOR
Glitch A A PIO Interrupt
Slow Clock Deho?lrncmg Resynchronization
Clock Filter Stage PIO_IERDD]

Pio scor || e PIO_IMRID]

PIO_IDR[0]
PIO_ISR[31]

PIO_IFER[D]

PIO_IFDR[0]

PIO_DCIFSR[0]

PIO_IFSCR(0] TN
PIO_SCIFSR[0] T

PIO_IMR[31]
PIO_IDR[31]

Figura A.1: Estructura interna de un pin de E/S del microcontrolador
ATSAM3XSE

Con un encapsulado LQFP de 144 pines, el microcontrolador dis-
pone de 4 controladores PIO capaces de gestionar hasta 32 pines cada
uno de ellos, para un total de 103 lineas de GPIO. Cada una de estas
lineas de entrada/salida es capaz de generar interrupciones por cambio
de valor o como linea dedicada de interrupcién; de configurarse para
filtrar o eliminar rebotes de la entrada; de actuar con o sin pull-up o
en colector abierto. Ademas, los pines de salida pueden ponerse a uno
o a cero individualmente, mediante registros dedicados de set o clear, o
conjuntamente a cualquier valor escribiendo en un tercer registro. To-

A.1. GPIO en el Atmel ATSAM3XS8E

234

das estas caracteristicas hacen que cada bloque PIO tenga una gran
complejidad, ocupando un espacio de 324 registros de 32 bits —1 296 di-
recciones— en el mapa de memoria. Veamos a continuacion los registros
mas importantes y su uso.

A.1.1. Configuracién como GPIO o E/S especifica de
otro periférico

La mayor parte de los pines del encapsulado pueden utilizarse como
parte de la GPIO o con una funcién especifica, seleccionable de entre
dos dispositivos de E/S del microcontrolador. Asi pues, para destinar
un pin a la GPIO deberemos habilitarlo para tal fin. Si posteriormente
queremos utilizar alguna de las funciones especificas, podremos volver a
deshabilitarlo como E/S genérica. Como en muchos otros casos, y por
motivos de seguridad y velocidad —ahorra tener que leer los registros
para preservar sus valores— el controlador PIO dedica tres registros
a este fin: uno para habilitar los pines, otro para deshabilitarlos y un
tercero para leer el estado de los pines en un momento dado. De esta
manera, dado que al habilitar y deshabilitar se escriben 1 en los bits
afectados, sin modificar el resto, no es necesario preservar ningin estado
al escribir. Veamos los registros asociados a esta funcionalidad:

» PIO Enable Register (PIO_PER): escribiendo un 1 en cualquier bit
de este registro habilita el pin correspondiente para uso como
GPIO, inhibiendo su uso asociado a otro dispositivo de E/S.

» PIO Disable Register (PI0_PDR): al revés que el anterior, escribien-
do un 1 se deshabilita el uso del pin como parte de la GPIO y se
asocia a uno de los dispositivos periféricos asociados.

» PIO Status Register (PIO_PSR): este registro de solo lectura permite
conocer en cualquier momento el estado de los pines asociados al
PIO. Un 1 en el bit correspondiente indica que son parte de la
GPIO mientras que un 0 significa que estan dedicados a la funcién
del dispositivo asociado.

» PIO Peripheral AB Select Register (PI0_ABSR): permite seleccionar
a cudl de los dos posibles dispositivos periféricos estd asociado el
pin en caso de no estarlo a la GPIO. Un 0 selecciona el Ay un 1 el
B. Los dispositivos identificados como A y B dependen de cada pin
en particular.

A.1.2. Configuracion y uso genéricos como GPIO

Una vez los pines se han asignado a la GPIO, es necesario realizar su
configuracién especifica. Esto incluye indicar si su direccién es entrada

A.1. GPIO en el Atmel ATSAM3XS8E

235

o salida, y activar o no las resistencias de pull-up o la configuracién en
colector abierto. Veamos los registros del PIO que se utilizan:

» Output Enable Register (PI0_OER): escribiendo un 1 en cualquier
bit de este registro configura el pin correspondiente como salida.

» Qutput Disable Register (PIO_ODR): escribiendo un 1 en cualquier
bit de este registro deshabilita el pin correspondiente como salida,
quedando entonces como pin de entrada.

» Qutput Status Register (PI0_0SR): este registro de solo lectura per-
mite conocer en cualquier momento la direcciéon de los pines. Un 1
en el bit correspondiente indica que el pin esta configurado como
salida mientras que un 0 significa que el pin es una entrada.

Se dispone ademas del trio de registros Pull-up Enable, Pull-up Di-
sable y Pull-up Status que permiten respectivamente activar, desactivar
y leer el estado de configuraciéon de las resistencias de pull-up. En este
altimo caso, un 1 indica deshabilitada y un 0 habilitada. Por tltimo, los
tres registros Multi-driver Enable, Multi-driver Disable y Multi-driver
Status permiten configurar eléctricamente el pin en colector abierto —o
deshacer esta configuracion— y leer el estado de los pines a este respecto
—de la forma habitual, no invertida como en el caso anterior—.

Una vez configurada la GPIO, nuestro programa debe tnicamente
trabajar con los pines, escribiendo y leyendo valores segtin la tarea a
realizar. De nuevo el bloque GPIO ofrece una gran versatilidad, a costa
de cierta complejidad, como veremos a continuacién. Comencemos con
la lectura de los valores de entrada, algo sencillo dado que basta con leer
el registro Pin Data Status Register (PI0O_PDSR) para obtener los valores
l6gicos presentes en ellos. Es conveniente indicar que para poder leer los
pines de entrada —igual que para muchas otras funciones del PIO— el
reloj que lo sincroniza debe estar activado. La gestién de las salidas
presenta algo méas de complejidad dado que existen dos modos de actuar
sobre cada una de ellas. Por una parte, tenemos la forma comiin en este
microcontrolador, disponiendo de un registro para escribir unos y otro
para escribir ceros. Este modo, que en muchas ocasiones simplifica la
escritura en los pines, presenta el problema de que no se pueden escribir
de forma simultanea unos y ceros. Por ello existe un segundo modo, en
que se escribe en una sola escritura el valor, con los unos y ceros deseado,
sobre el registro de salida. Para que este modo no afecte a todos los pines
gestionados por el PIO —hasta 32— existe un registro adicional para
seleccionar aquéllos a los que va a afectar esta escritura. Para poder
implementar todos estos modos, el conjunto de registros relacionados
con la escritura de valores en las salidas, es el siguiente:

A.1. GPIO en el Atmel ATSAM3XS8E

236

» Set Output Data Register (PI0_SODR): escribiendo un 1 en cualquier
bit de este registro se escribe un uno en la salida correspondiente.

» Clear Output Data Register (PI0_CODR): escribiendo un 1 en cual-
quier bit de este registro se escribe un cero en la salida correspon-
diente.

» Output Data Status Register (PI0_0DSR): al leer este registro obte-
nemos en cualquier momento el valor l6gico que hay en las salidas
cuando se lee. Al escribir en él, modificamos con el valor escrito
los valores de aquellas salidas habilitadas para escritura directa en
PIO_OWSR.

» OQutput Write Enable Register (PIO_OWER): escribiendo un 1 en cual-
quier bit de este registro habilita tal pin para escritura directa.

» Qutput Write Disable Register (PIO_OWDR): escribiendo un 1 en
cualquier bit de este registro deshabilita tal pin para escritura
directa.

» Output Write Status Register (PI0_OWSR): este registro de solo lec-
tura permite conocer en cualquier momento las salidas habilitadas
para escritura directa.

A.1.3. Gestion de interrupciones asociadas a la GPIO

El controlador PIO es capaz de generar diversas interrupciones aso-
ciadas a los pines de la GPIO a él asociados. Para que dichas interrup-
ciones se puedan propagar al sistema, la interrupcién generada por el
PIO debe estar convenientemente programada en el controlador de inte-
rrupciones del sistema, llamado NVIC. Ademads el reloj de sincronizacion
del PIO debe estar activado. Dandose estas circunstancias, el PIO ges-
tiona diferentes fuentes de interrupcién que disponen de un registro de
sefializacién y otro de méascara. La activacién de cualquier causa de inte-
rrupcién se reflejard siempre en el registro de senalizacion y se generard
o no la interrupcién en funcién del valor de la méscara correspondien-
te, que estard a 1 si la interrupcién estd habilitada. La causa bésica de
interrupcién es el cambio de valor en un pin. Sin embargo, esta causa
puede modificarse para que la interrupcién se genere cuando se detec-
ta un flanco de subida o de bajada, o un nivel determinado en el pin.
Veamos el conjunto de registros que permiten esta funcionalidad, y su
uso:

» Interrupt Enable Register (PI0_IER): escribiendo un 1 en cualquier
bit de este registro se habilita la interrupcién correspondiente.

A.1. GPIO en el Atmel ATSAM3XS8E 237

» Interrupt Disable Register (PI0_IDR): escribiendo un 1 en cualquier
bit de este registro se deshabilita la interrupciéon correspondiente.

» Interrupt Mask Register (PIO_IMR): al leer este registro obtenemos
el valor de la mascara de interrupciones, que se corresponde con
las interrupciones habilitadas.

v Interrupt Status Register (PI0O_ISR): en este registro se senalan con
un 1 las causas de interrupcion pendientes, es decir aquéllas que
se han dado, sea cual sea su tipo, desde la ultima vez que se leyo
este registro. Se pone a 0 automaticamente al ser leido.

» Additional Interrupt Modes Enable Register (PIO_AIMER): escri-
biendo un 1 en cualquier bit de este registro se selecciona la causa
de interrupcién adicional, por flanco o por nivel.

» Additional Interrupt Modes Disable Register (PIO_AIMDR): escri-
biendo un 1 en cualquier bit de este registro se selecciona la causa
basica de interrupcién, cambio de valor en el pin.

» Additional Interrupt Modes Mask Register (PIO_AIMMR): este re-
gistro de solo lectura permite saber si la causa de interrupciéon
configurada es cambio de valor, lo que se indica con un 0, o modo
adicional, con un 1.

» FEdge Select Register (PI0_ESR): escribiendo un 1 en cualquier bit de
este registro se selecciona el flanco como la causa de interrupciéon
adicional.

» Level Select Register (PI0O_LSR): escribiendo un 1 en cualquier bit
de este registro se selecciona el nivel como la causa de interrupcién
adicional.

» Edge/Level Status Register (PIO_ELSR): este registro de solo lectura
permite saber si la causa de interrupcién adicional configurada es
flanco, lo que se indica con un 0, o nivel, con un 1.

» Falling Edge/Low Level Select Register (PIO_FELLSR): escribiendo
un 1 en cualquier bit de este registro se selecciona el flanco de
bajada o el nivel bajo, segiin PIO_ELSR, como la polaridad de inte-
rrupcion.

» Rising Edge/High Level Select Register (PIO_REHLSR): escribiendo
un 1 en cualquier bit de este registro se selecciona el flanco de
subida o el nivel alto, segiin PI0_ELSR, como la polaridad de inte-
rrupcion.

» Fall/Rise Low/High Status Register (PIO_FRLHSR): este registro de
solo lectura permite saber la polaridad de la interrupcién.

A.1. GPIO en el Atmel ATSAM3XS8E

238

A.1.4. Registros adicionales y funciones avanzadas del
PIO

Una de las funciones avanzadas del controlador PIO es la elimina-
cién de ruidos en las entradas. Aunque no se va a ver en detalle —recor-
demos que siempre se puede acceder a la especificacién completa en el
manual— conviene comentar que se tiene la posibilidad de activar filtros
para las senales de entrada, configurables como filtros de ruido —tra-
duccién aproximada de glitches— o para la eliminacion de rebotes si a
la entrada se conecta un pulsador —debouncing—. Como estos filtros
estan basados en el sobremuestreo de la sefial presente en el pin —recor-
demos que las entradas no leen directamente el pin sino que muestrean
su valor y lo almacenan en un registro— es posible ademas variar el reloj
asociado a este sobremuestreo.

La dltima posibilidad que ofrece el controlador PIO es la de bloquear
o proteger contra escritura parte de los registros de configuracion que
se han descrito, para prevenir que errores en la ejecucién del programa
produzcan cambios indeseados en la configuracion.

A.1.5. Controladores PIO en el ATSAM3XSE

Conocida la informacion que aparece en el texto anterior, para hacer
programas que interactien con la GPIO del microcontrolador solo falta
conocer las direcciones del mapa de memoria en que se sitdan los re-
gistros de los controladores PIO del ATSAM3XSE y la direccién —mas
bien desplazamiento u offset— de cada registro dentro del bloque. El
Cuadro A.1 muestra las direcciones base de los controladores PIO de
que dispone el sistema.

PIO Pines de E/S disponibles Direccién base

PIOA 30 0x400E OEOO
PIOB 32 0x400E 1000
PIOC 31 0x400E 1200
PIOD 10 0x400E 1400

Cuadro A.1: Direcciones base de los controladores PIO del ATSAM3XSE

Asi mismo, en los Cuadross A.2, A.3y A.4se muestran los desplaza-
mientos (offsets) de los registros de E/S de cada uno de los controladores
PIO, de forma que para obtener la direcciéon de memoria efectiva de uno

A.2. La tarjeta de entrada/salida

239

de los registros hay que sumar a la direccion base del controlador PIO
al que pertenece, el desplazamiento indicado para el propio registro:

Registro Alias Desplazamiento

PIO Enable Register PIO_PER 0x0000
PIO Disable Register PIO_PDR 0x0004
PIO Status Register PIO_PSR 0x0008
Output Enable Register PIO_OER 0x0010
Output Disable Register PIO_ODR 0x0014
Output Status Register PIO_OSR 0x0018
Glitch Input Filter

Enable Register PIO_IFER 0x0020
Glitch Input Filter

Disable Register PIO_IFDR 0x0024
Glitch Input Filter

Status Register PIO_PIFSR 0x0028
Set Output Data Register PI0O_SODR 0x0030
Clear Output Data Register PIO_CODR 0x0034
Output Data Status Register =~ PI0_0DSR 0x0038
Pin Data Status Register PIO_PDSR 0x003C

Cuadro A.2: Registros de E/S de cada controlador PIO y sus desplaza-
mientos. Parte I

A.2. La tarjeta de entrada/salida

Para poder practicar con la GPIO se ha disenado una pequena tar-
jeta que se inserta en los conectores de expansion de la Arduino Due. La
tarjeta dispone de un LED RGB —rojo Red verde Green azul Blue— co-
nectado a tres pines que se usaran como salidas, y un pulsador conecta-
do a un pin de entrada. Los tres diodos del LED estan configurados en
dnodo comun, por lo que se encienden al escribir un 0 en la salida co-
rrespondiente. Cada canal del LED lleva su correspondiente resistencia
para limitar la corriente; el terminal comin se debe conectar, a través
del cable soldado a la tarjeta, a la salida de 3.3V de la Arduino Due. El
pulsador se conecta a un pin de entrada a través de una resistencia de

A.3. El temporizador del Atmel ATSAMB3XS8E y del sistema Arduino

240

Registro Alias Desplazamiento
Interrupt Enable Register PIO_IER 0x0040
Interrupt Disable Register PIO_IDR 0x0044
Interrupt Mask Register PIO_IMR 0x0048
Interrupt Status Register PIO_ISR 0x004C
Multi-driver Enable Register PIO_MDER 0x0050
Multi-driver Disable Register PIO_MDDR 0x0054
Multi-driver Status Register PI0_MDSR 0x0058
Pull-up Disable Register PIO_PUDR 0x0060
Pull-up Enable Register PIO_PUER 0x0064
Pad Pull-up Status Register PI0O_PUSR 0x0068
Peripheral AB Select Register PIO_ABSR 0x0070
System Clock Glitch
Input Filter Select Register PIO_SCIFSR 0x0080
Debouncing Input
Filter Select Register PIO_DIFSR 0x0084
Glitch or Debouncing Input Filter
Clock Selection Status Register PIO_IFDGSR 0x0088
Slow Clock Divider
Debouncing Register PI0_SCDR 0x008C

Cuadro A.3: Registros de E/S de cada controlador PIO y sus desplaza-
mientos. Parte 11

proteccién, y a masa. Activando la resistencia de pull-up asociada al pin,
se leerd un 1 légico si el interruptor no estd pulsado, y un 0 al pulsarlo.

El Cuadro A.5 y las Figuras 9.6 y 9.7 completan la informacion
técnica acerca de la tarjeta.

A.3. El temporizador del Atmel ATSAM3XSE
y del sistema Arduino
La arquitectura ARM especifica un temporizador llamado System

Timer como la base principal de tiempos del sistema, con una frecuen-
cia de incremento similar a la del procesador lo que le permite medir

A.3. El temporizador del Atmel ATSAMB3XS8E y del sistema Arduino 241

Registro Alias Desplazamiento
Output Write Enable PIO_OWER 0x00A0
Output Write Disable PI0O_OWDR 0Xx00A4
Output Write Status Register =~ PI0_0WSR OX00A8
Additional Interrupt
Modes Enable Register PIO_AIMER 0x00BO
Additional Interrupt
Modes Disable Register PIO_AIMDR 0x00B4
Additional Interrupt
Modes Mask Register PIO_AIMMR 0x00B8
Edge Select Register PIO_ESR 0x00C0
Level Select Register PIO_LSR 0x00C4
Edge/Level Status Register PIO_ELSR 0x00C8
Falling Edge/Low Level
Select Register PIO_FELLSR 0x00D0
Rising Edge/ High Level
Select Register PIO_REHLSR 0x00D4
Fall/Rise - Low/High
Status Register PIO_FRLHSR 0x00D8
Lock Status PIO_LOCKSR Ox00E0

Write Protect
Mode Register PI0_WPMR OX00E4

Write Protect
Status Register PI0_WPSR OX00E8

Cuadro A.4: Registros de E/S de cada controlador PIO y sus desplaza-
mientos. Parte II1

intervalos de tiempo muy pequenios —del orden de microsegundos—.
Para este temporizador, que no es otra cosa que un dispositivo de en-
trada/salida, aunque especial en el sistema, reserva sin embargo una
excepcién del sistema, llamada SysTick, con un nimero de interrupcion
fijo en el sistema, a diferencia del resto de dispositivos, cuyos niimeros
de interrupcion no estan fijados por la arquitectura.

El microcontrolador ATSAM3XS8E implementa el System Timer es-
pecificado en la arquitectura. Se trata de un dispositivo de entrada/sa-

A.3. El temporizador del Atmel ATSAMB3XS8E y del sistema Arduino

242

PIN Funcion Puerto Bit

6 LED azul PIOC 24
7 LED verde PIOC 23
8 LED rojo PIOC 22
13 Pulsador PIOB 27

Cuadro A.5: Pines y bits de los dispositivos de la tarjeta de E/S en la
tarjeta Arduino Due

lida que se comporta como un temporizador convencional, que se decre-
menta con cada pulso de su reloj. Dispone de cuatro registros, que se
describen a continuacion:

» Control and Status Register (CTRL): de los 32 bits que contiene
este registro solo 4 son ttiles, tres de control y uno de estado.
De los primeros, el bit 2 —CLKSOURCE— indica la frecuencia del
temporizador, que puede ser la misma del sistema o un octavo de
ésta; el bit 1 —TICKINT— es la habilitacién de interrupcion y el
bit 0 —ENABLE— la habilitacién del funcionamiento del tempori-
zador. El bit 16 —COUNTFLAG— es el tnico de estado, e indica si el
contador ha llegado a 0 desde la dltima vez que se ley6 el registro.

» Reload Value Register (LOAD): cuando el temporizador llega a 0
recarga automaticamente el valor de 24 bits —los 8 mas altos no
se usan— presente en este registro, comenzando a decrementarse
desde tal valor. De esta manera se puede ajustar con mas precisiéon
el tiempo transcurrido hasta que se llega a cero y con ello, si estan
habilitadas, el tiempo entre interrupciones.

» Current Value Register (VAL): este registro guarda el valor actual
del contador decreciente, de 24 bits —los 8 mas altos no se usan—.

» Calibration Value Register (CALIB): contiene valores relacionados
con la calibracién de la frecuencia de actualizacion.

En el Cuadro A.6 aparecen las direcciones de los registros citados.

El entorno Arduino afiade a cada programa el c6digo necesario para
la configuraciéon del sistema y las rutinas de soporte necesarias. Entre
ellas se tiene la configuracién del System Timer y la rutina de tratamien-
to de la excepcién SysTick. Este codigo configura el reloj del sistema,
de 84MHz, como frecuencia de actualizacion del temporizador, y escribe
el valor 0x01481F, 83999 en decimal, en el registro de recarga. De esta
manera se tiene un cambio en el contador cada 12 nanosegundos mas o

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E

243

Registro Alias Direccion

Control and Status Register ~CTRL 0xEGOOE010
Reload Value Register LOAD OxEGOOE014
Current Value Register VAL OXEGOOEO18
Calibration Value Register CALIB OxEGOOEG1C

Cuadro A.6: Registros del temporizador del ATSAM3XS8E y sus direc-
ciones de E/S

menos y una interrupcién cada milisegundo, lo que sirve de base para las
funciones «delay()» y «millis()» del entorno. Ambas utilizan el con-
tador de milisegundos del sistema «_dwTickCount», que es una variable
en memoria que se incrementa en la rutina de tratamiento de SysTick.
Las funciones de mayor precisién «delayMicroseconds()» y «micros()»
se implementan leyendo directamente el valor del registro VAL.

A.4. El reloj en tiempo real del Atmel
ATSAM3XSE

Algunos microcontroladores incorporan un RT'C entre sus periféricos
integrados, lo cual les permite disponer de fecha y hora actualizadas. En
este caso, sin embargo, no suele existir alimentacién especifica para el
moédulo RTC, con lo cual, al desaparecer la alimentaciéon externa, se
pierde la informacién de fecha y hora actuales.

El microcontrolador ATSAMS3XS8E posee un RTC cuya estructura se
muestra en la Figura A.2. Como puede apreciarse, recibe una senial de
reloj SCLK (Slow Clock) generada internamente por el microcontrolador
que presenta la ya mencionada frecuencia de 32768 Hz. Esta sefial se
hace pasar por un divisor por 32 768 para obtener una sefial de reloj de
exactamente 1 Hz, que se encargard de activar las actualizaciones de los
contenidos de los registros que mantienen la hora y la fecha actuales, en
ese orden.

Por otro lado, el RT'C esta conectado al bus interno del ATSAM3XS8E
para que se pueda acceder a los contenidos de sus registros. De esta
forma es posible tanto leer la fecha y hora actuales, modificarlas y con-
figurar las alarmas. Para ello, el RTC dispone de algunos registros de
control encargados de gestionar las funciones de consulta, modificacién
y configuracion del moédulo.

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E

244

(32?7C6:3|2_3KHZ) Divisor por 32.768 Hora ———| Fecha
Bus < »| Interfaz del bus - I I >
Interrupcion Control
RTC interrupciones

Figura A.2: Estructura interna del RTC del ATSAM3XS8E

A.4.1. Hora actual

La hora actual se almacena en un registro de 32 bits denominado
RTC_TIMR (RTC Time Register), cuyo formato se muestra en la Figu-
ra A.3, donde la hora puede estar expresada en formato de 12 horas
mas indicador AM/PM —bit 22— o en formato de 24 horas. Todos los
valores numéricos estan codificados en BCD (Binary Coded Decimal,
decimal codificado en binario), cuya equivalencia se muestra en el Cua-
dro A.7.

Decimal BCD Decimal BCD
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

Cuadro A.7: Equivalencia entre decimal y BCD

Los segundos —SEC— se almacenan en los bits 0 al 6, conteniendo
los bits del 0 al 3 el valor de las unidades. Dado que las decenas adoptan
como maximo el valor 5, para este digito solamente son necesarios tres
bits —del 4 al 6—, por lo cual el bit 7 no se usa nunca y siempre debe
valer cero.

Los minutos —MIN— se almacenan en los bits del 8 al 14. Las uni-
dades se almacenan en los bits del 8 al 11 y con las decenas ocurre lo
mismo que con los segundos: solamente hacen falta tres bits, del 12 al

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E

245

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

|jtJni(iades en BCD

L———— Decenas en BCD

AMPM
0-AM
1-PM

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

MIN - SEC

|——Unid‘ades en BCD

——————————— Decenas en BCD

Unidades en BCD

Decenas en BCD

Figura A.3: Formato del registro RT'C Time Register

14.

En cuanto a las horas —HOUR—, las decenas solamente pueden tomar
los valores 0, 1 y 2, con lo cual es suficiente con dos bits —el 20 y el
21— y asi el bit 22 queda para expresar la manana y la tarde en el
formato de 12 horas y el 23 no se usa.

El resto de bits —del 24 al 31— no se usan. El valor de la hora actual
se lee y se escribe como un valor de 32 bits accediendo a este registro
con una sola operacion de lectura o escritura.

A.4.2. Fecha actual

La fecha actual se almacena en el registro RTC_CALR (RT'C' Calendar
Register) organizado como se muestra en la Figura A.4:

Los bits del 0 al 6 contienen el valor del siglo —CENTURY—, pudiendo
tomar solamente los valores 19 y 20 —refiriéndose, respectivamente, a
los siglos 20 y 21—. Los bits del 0 al 3 almacenan las unidades de este
valor (9 6 0) y los bits del 4 al 6 las decenas (0 6 2).

El afio actual —YEAR— se almacena en los bits del 8 al 15, conte-
niendo los bits del 8 al 11 el valor BCD correspondiente a las unidades
y los bits del 12 al 15 el valor BCD correspondiente a las decenas.

Esto confiere al ATSAM3XS8E la capacidad de expresar la fecha ac-
tual en un rango de 200 afios, desde el 1 de enero de 1900 hasta el 31 de
diciembre de 2099.

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E 246

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATE DAY MONTH
I I L L
Decenas en BCD J ‘jwiades en BCD
UnidadesenBCD ———— Decenas en BCD
Ver texto
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
YEAR - CENT

1L L I

,jwilades en BCD

Decenas en BCD

Unidades en BCD

Decenas en BCD

Figura A.4: Formato del registro RTC Calendar Register

El mes del ano —MONTH— se almacena en los bits del 16 al 20, con-
teniendo el valor BCD de las unidades los bits del 16 al 19 y el de las
decenas —0 6 1— el bit 20.

El dia de la semana —DAY— es almacenado en los bits del 21 al 24,
pudiendo tomar valores comprendidos entre @ y 7 cuyo significado es
asignado por el usuario.

La fecha del mes —DATE— se almacena en los bits del 24 al 29, de
forma que los bits del 24 al 27 contienen el valor en BCD de las unidades
y los bits 28 y 29 el valor en BCD de las decenas (0, 1, 2 6 3).

A.4.3. Lectura de la fecha y hora actuales

Para poder acceder a los registros del RTC se debe conocer tanto
la direccién base que ocupa el periférico en el mapa de memoria como
el desplazamiento del registro al que se desea acceder. En este caso, el
RTC del ATSAM3XS8E abarca 256 direcciones —desplazamientos com-
prendidos entre 0x00 y 0xFF— a partir de la direccién 0x400E 1A60. Los
desplazamientos de los diferentes registros del RT'C pueden consultarse
en el Cuadro A.8, donde puede verse que el correspondiente al registro
RTC_TIMR es 0x08 y el del registro RTC_CALR es 0x0C. Asi pues, para leer
la fecha actual serd necesario realizar una operacién de lectura sobre la
direccién 0x400E 1A6C y para obtener la hora actual serd necesario leer
el contenido de la direccién 0x400E 1A68.

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E

247

Registro Alias Desplazamiento

Control Register RTC_CR 0x00
Mode Register RTC_MR 0x04
Time Registert RTC_TIMR 0x08
Calendar Register RTC_CALR 0x0C
Time Alarm Register RTC_TIMALR 0x10
Calendar Alarm Register RTC_CALALR 0x14
Status Register RTC_SR 0x18
Status Clear

Command Register RTC_SCCR 0x1C
Interrupt Enable Register RTC_IER 0x20
Interrupt Disable Register RTC_IDR 0x24
Interrupt Mask Register RTC_IMR 0x28
Valid Entry Register RTC_VER 0x2C
Reserved Register - 0x30—-0xE0
Write Protect Mode Register ~ RTC_WPMR OXE4
Reserved Register - OXE8—OxXFC

Cuadro A.8: Desplazamientos de los registros del RTC

Debido a que el RT'C es independiente del resto del sistema y funcio-
na de forma asincrona respecto del mismo, para asegurar que la lectura
de sus contenidos es correcta, es necesario realizarla por duplicado y
comparar ambos resultados. Si son idénticos, es correcto. De lo contra-
rio hay que repetir el proceso, requiriéndose un minimo de dos lecturas
y un maximo de tres para obtener el valor correcto.

A.4.4. Actualizacién de la fecha y hora actuales

La configuracion de la fecha y hora actuales en el RTC requiere de
un procedimiento a que se describe a continuacion.

1. Inhibir la actualizaciéon del RTC. Esto se consigue mediante los
bits UPDCAL para la fecha y UPDTIM para la hora. Ambos se encuen-
tran, como muestra la Figura A.5, en el registro de control RTC_CR.
Cada uno de estos bits detiene la actualizacién del contador corres-
pondiente cuando toma al valor 1, permitiendo el funcionamiento

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E 248

normal del RT'C cuando vale 0. Asi pues, si deseamos establecer la
fecha actual, deberemos escribir un 1 en el bit de peso 1 del regis-
tro RTC_CR antes de modificar el registro RTC_CALR. Este registro,
junto con los que sirven para configurar las alarmas, dispone de
una proteccién contra escritura que se puede habilitar en el regis-
tro RTC_WPMR (RT'C' Write Protect Mode Register) introduciendo la
clave correcta en el registro, cuyo formato se muestra en la Figu-
ra A.6. Para que el cambio de modo de proteccién contra escritura
de los registros protegidos —RTC_CR, RTC_CALALR y RTC_TIMALR— se
produzca, la clave introducida en el campo WPKEY debe ser 0x525443
—'RTC’ en ASCII—, mientras el byte de menor peso de la pala-
bra de 32 bits debe tomar el valor 0x00 para permitir la escritura
y el valor 0x01 para impedirla. Por defecto, la proteccién contra
escritura estd deshabilitada.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CALEVSEL

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

TIMEVSEL - - - - - - L4

[UPDTIM

0 - Sin efecto

1 - Bloquea hora
UPDCAL

0 - Sin efecto

1 - Bloquea fecha

Figura A.5: Formato del registro RT'C Control Register

2. Esperar la activacién de ACKUPD, que es el bit de peso 0 del registro
de estado RTC_SR —mostrado en la Figura A.7—. En caso de que
la generacién de interrupciones esté activada, no serd necesario
consultar el registro, dado que se producira una interrupcion.

3. Una vez se haya detectado que el bit ACKUPD ha tomado el valor
1, es necesario restablecer este indicador escribiendo un 1 en el
bit de peso 0, denominado ACKCLR, del registro RTC_SCCR (RTC
Status Clear Command Register) cuyo formato se muestra en la
Figura A.8.

4. Ahora se puede escribir el nuevo valor de la hora y /o fecha actuales
en sus correspondientes registros —RTC_TIMR y RTC_CALR respecti-
vamente—. El RT'C comprueba que los valores que se escriben sean

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E

249

31 30 29 28 27 26 25 24 23 22 21

WPKEY

15 14 13 12 1" 10 9 8 7

L WPEN

0 - Proteccion escritura registros desactivada
1 - Proteccion escritura registros activada

Figura A.6: Formato del registro RTC Write Protect Mode Register

31 30 29 28 27 26 25 24 23 22 21

- - [] ° [] [] T
| —
CALEV TIMEV SEC ALARM ACKUPD

Figura A.7: Formato del registro RTC Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CALCLR TIMCLR SECCLR ALRCLR ACKCLR

Figura A.8: Formato del registro RTC Status Clear Command Register

correctos. De no ser asi, se activa el indicador correspondiente en
el RTC_VER (RTC Valid Entry Register) cuyo formato se muestra

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E

250

31

en la Figura A.9.

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[] [] ® T

| — J

NVCALALR NVTIMALR NVCAL NVTIM

Figura A.9: Formato del registro RTC Valid Entry Register

De esta forma, si alguno de los campos de la hora indicada no es
correcto, se activard (presentando un valor 1) el indicador NVTIM
(Non-valid Time) y si uno o méas de los campos de la fecha no
es correcto, se activara el indicador NVCAL (Non-valid Calendar).
El RTC quedara bloqueado mientras se mantenga esta situacién
y los indicadores solamente volveran a la normalidad cuando se
introduzca un valor correcto.

. Restablecer el valor de los bits de inhibicién de la actualizacion

—UPDCAL y/o UPDTIM— para permitir la reanudacién del funcio-
namiento del RTC. Si solamente se modifica el valor de la fecha
actual, la porcién del RTC dedicada al célculo de la hora actual
sigue en funcionamiento, mientras que si solo se modifica la hora,
el calendario también es detenido. La modalidad de 12/24 horas se
puede seleccionar mediante HRMOD, bit de peso 0 del registro RTC_MR
(Mode Register) cuyo formato se muestra en la Figura A.10. Escri-
biendo en HRMOD el valor 1 se configura el RTC en modo 24 horas,
mientras que el valor 0 establece la configuracién en el modo de
12 horas.

A.4.5. Alarmas

El RTC posee la capacidad de establecer valores de alarma para cin-

co campos: mes, dia del mes, hora, minuto, segundo. Estos valores estan
repartidos en dos registros: RTC_TIMALR (RT'C' Time Alarm Register) cu-
yo formato es mostrado en la Figura A.11, y RTC_CALALR (RTC Calendar
Alarm Register) cuyo formato es mostrado en la figura A.12.

Cada uno de los campos configurables posee un bit de activacion

asociado, de forma que su valor puede ser considerado o ignorado en

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E

251

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

\— HRMOD

0 - Modo 24 horas
1 - Modo 12 horas

Figura A.10: Formato del registro RTC Mode Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- - - - - - - - [} [] HOUR
J 1

HOUREN

0 - Desactiva alarma por hora

1 - Activa alarma por hora Unidades en BCD
AMPM

0-AM t——————— Decenas en BCD

1-PM

JL J L Il

|jtJr1idees en BCD

Decenas en BCD

MINEN]

0 - Desactiva alarma por minutos
1 - Activa alarma por minutos

Decenas en BCD SECEN

0 - Desactiva alarma por segundos

Unidades en BCD 1 - Activa alarma por segundos

Figura A.11: Formato del registro RTC Time Alarm Register

la activacién de la alarma. Asi pues, si por ejemplo escribimos un 1 en
DATEEN —bit 23 del registro RTC_CALALR— y el valor ‘18’ en BCD en DATE
—Dbits 16 a 20 del mismo registro— generaremos una alarma el dia 18
de cada mes.

Los valores introducidos en los campos configurables se comprueban
al igual que los de fecha y hora anteriormente comentados y, si se detecta
un error, se activan los indicadores correspondientes del registro RTC_VER
(RTC Valid Entry Register) mostrado en la Figura A.9. Si se activan to-
dos los campos configurables y se establece un valor vilido para cada uno
de ellos, se configura una alarma para un instante determinado, llegado
el cual se activara el bit ALARM (bit 1 del registro RTC_SR (RT'C Status

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E 252

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

[] - DATE [] - - MONTH

DATEEN J |——Uni<‘1ades en BCD

0 - Desactiva alarma por dia
1 - Activa alarma por dia

Decenas en BCD

DecenasenBCD —————— MTHEN
. 0 - Desactiva alarma por mes
UnidadesenBCD ——— 1 - Activa alarma por mes

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Figura A.12: Formato del registro RTC Calendar Alarm Register

Register) cuyo formato se muestra en la Figura A.7) y, en caso de estar
activada la generacién de interrupciones, se producird una interrupcion.
Para restablecer los indicadores del registro RTC_SR (RT'C' Status Regis-
ter) hay que escribir un 1 en cada uno de los bits correspondientes del
registro RTC_SCCR (RT'C Status Clear Command Register).

Si se produce una segunda alarma antes de que se haya leido el regis-
tro RTC_SR (RT'C Status Register), mostrado en la Figura A.7, tras una
alarma, se activard SEC —bit de peso 2 del registro RTC_SR— que indica
que al menos dos alarmas se han producido desde que se restableci6 el
valor del indicador por ltima vez.

A.4.6. Eventos periddicos

Ademaés de las alarmas en instantes programados, como se ha visto
en el apartado anterior, el RT'C también posee la capacidad de producir
alarmas periédicas con diferentes cadencias configurables a través del
registro RTC_CR (RT'C Control Register), cuyo formato se muestra en la
Figura A.5. En sus bits 8 y 9 se encuentra el valor del campo TIMEVSEL
que activa/desactiva la generacién de eventos periddicos de hora y en
los bits 16 y 17 el campo CALEVSEL que activa/desactiva la generacién
de eventos periddicos de calendario.

Un evento de hora puede ser a su vez de cuatro tipos diferentes,
mostrados en el Cuadro A.9, dependiendo del valor que tome el campo
TIMEVSEL.

De la misma forma, un evento de fecha puede ser a su vez de tres
tipos diferentes, mostrados en el Cuadro A.10, dependiendo del valor
que tome el campo CALEVSEL.

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E 253

Valor Nombre Evento

0 MINUTE Cada cambio de minuto

1 HOUR Cada cambio de hora
2 MIDNIGHT Cada dia a medianoche
3 NOON Cada dia a mediodia

Cuadro A.9: Tipos de eventos periédicos de hora

Valor Nombre Evento

0 WEEK Cada lunes a las 0:00:00

1 MONTH El dia 1 de cada mes a las 0:00:00
2 YEAR Cada 1 de enero a las 0:00:00

3 - Valor no permitido

Cuadro A.10: Tipos de eventos periddicos de fecha

Al igual que ocurre con las alarmas de tiempo concreto, la notifi-
cacion de que se ha producido un evento periddico se produce a través
del registro RTC_SR (RTC' Status Register) mostrado en la Figura A.7,
donde, en caso de que se haya producido un evento periédico de hora,
se activard TIMEV —bit de peso 3— y en caso de que se haya detectado
un evento peridédico de fecha de acuerdo con lo configurado, se activara
CALEV —bit de peso 4—.

Al leer este registro, el hecho de que uno o més de estos bits estén
activos, es decir, que presenten el valor 1, nos indicard que la condicién
de evento periddico se ha producido al menos en una ocasiéon desde la
ultima vez que se leyd el contenido del registro. La lectura del registro
restablece el valor de todos sus indicadores a 0.

A.4.7. Interrupciones en el RTC

El RTC posee la capacidad de generar interrupciones cuando se pro-
ducen una serie de circunstancias:

» Actualizacién de fecha/hora.
= Evento de tiempo.
= Evento de calendario.

= Alarma.

A.4. Fl reloj en tiempo real del Atmel ATSAM3XS8E

254

= Segundo evento de alarma periddica.

Para gestionar la generacién de estas interrupciones y la atencion de
las mismas, existen los registros de interrupciéon del RTC, que a conti-
nuacion se describen.

La activacion de la generacién de interrupciones se consigue a través
del registro RTC_IER (RTC Interrupt Enable Register), cuyo formato se
muestra en la Figura A.13, donde puede apreciarse que se dispone de
cinco bits de configuracion para activar la generacion de interrupciones:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

CALEN TIMEN SECEN ALREN ACKEN

Figura A.13: Formato del registro RTC Interrupt Enable Register

» Inhibicion de la actualizacion del RTC': escribiendo un 1 en ACKEN
—bit de peso 0— activamos la generacién de una interrupcion
cuando se active el bit ACKUPD del registro RTC_SR (RT'C' Status
Register), mostrado en la Figura A.7, como consecuencia de haber
inhibido la actualizaciéon del RTC mediante uno de los bits UPDCAL
0 UPDTIM del registro RTC_CR —véase la Figura A.5— o ambos.

s Condicion de alarma: escribiendo un 1 en ALREN —bit de peso
1— activamos la generacién de una interrupcién al activarse el
bit ALARM del registro RTC_SR (RT'C Status Register). Esto ocurre
cuando se cumple la condicién de generacion de alarma especifica-
da en uno de los registros RTC_TIMALR (RT'C Time Alarm Register)
0 RTC_CALALR (RTC Calendar Alarm Register).

= Segunda alarma: escribiendo un 1 en SECEN —bit de peso 2—,
activamos la generacién de una interrupcién al activarse el bit SEC
del registro RTC_SR (RT'C Status Register), lo cual indica que se ha
cumplido la condiciéon de alarma en una segunda ocasién sin que
el registro RTC Status Register haya sido leido.

A.5. El Temporizador en Tiempo Real (RTT) del Atmel ATSAM3XSE

255

s FEvento periddico de hora: escribiendo un 1 en TIMEN —bit de peso
3— se activa la generaciéon de una interrupcién cuando se activa
el bit TIMEV del registro RTC_SR, lo cual ocurrira cuando se cum-
pla la condicién peridédica configurada en el campo TIMEVSEL del
registro RTC_CR ((RT'C Control Register) —véanse la Figura A.5 y
el Cuadro A.9—.

= Fvento periodico de fecha: escribiendo un 1 en CALEN —bit de peso
4— se activa la generacién de una interrupcién cuando se activa
el bit CALEV del registro RTC_SR lo cual ocurrird cuando se cumpla
la condicién peridédica configurada en el campo CALEVSEL del re-
gistro RTC_CR (RTC Control Register) —véanse la Figura A.5 y el
Cuadro A.10—.

Cada vez que se produzca una interrupcion, en la correspondiente
rutina de servicio se debera acceder al registro RTC_SR (RT'C Status Re-
gister) para averiguar cuél es la causa de la misma. Es posible que varias
circunstancias hayan concurrido para la generacién de la interrupcion,
con lo cual es aconsejable comprobar todos y cada uno de los bits del
registro de estado. Una vez averiguadas las causas de la interrupciéon
y tomadas las acciones pertinentes, antes de regresar de la rutina de
servicio, se deben restablecer los indicadores escribiendo ceros en el re-
gistro RTC_SCCR (RTC Status Clear Command Register), cuyo formato
se muestra en la Figura A.8, para dejar el sistema en disposicién de que
se produzcan nuevas interrupciones.

A.5. El Temporizador en Tiempo Real (RTT)
del Atmel ATSAM3XSE

El Temporizador en Tiempo Real (o Real Time Timer, RTT) es un
temporizador del ATSAM3XS8E simple y versatil, por lo que se puede
utilizar de forma sencilla —y con plena libertad dado que no es utilizado
por el sistema Arduino—. Se trata basicamente de un registro contador
de 32 bits, que tiene una frecuencia base de actualizacién de 32 768 Hz,
como el RTC. Esta frecuencia se puede dividir gracias a un prescaler
de 16 bits. El dispositivo dispone ademas de un registro de alarma para
generar interrupciones cuando la cuenta del temporizador alcanza el
valor almacenado en él, y es capaz ademds de generar interrupciones
periddicas cada vez que se incrementa el valor del temporizador. Utiliza
los cuatro registros que se describen a continuacién:

» Mode Register (RTT_MR): es el registro de control del dispositivo.
Los 16 bits mas bajos almacenan el prescaler. Con un valor de
0x8000 se tiene una frecuencia de actualizacién de un segundo,

A.5. El Temporizador en Tiempo Real (RTT) del Atmel ATSAM3XSE

256

lo que indica que estd pensado para temporizaciones relaciona-
das con tiempos de usuario mas que de sistema. No obstante, se
puede poner en estos bits cualquier valor superior a 2. El bit 18
—RTTRST— sirve para reiniciar el sistema —escribiendo un 1—, po-
niendo el contador a 0 y actualizando el valor del prescaler. El bit
17 —RTTINCIEN— es la habilitacién de interrupcién por incremen-
to, y el bit 16 —ALMIEN— la de interrupcién por alarma. Ambas
se habilitan con un 1.

Alarm Register (RTT_AR): almacena el valor de la alarma, de 32
bits. Cuando el contador alcance este valor, se producird una in-
terrupciéon en caso de estar habilitada.

Value Register (RTT_VR): guarda el valor del contador, que se va
incrementando con cada pulso —segtn la frecuencia base dividida
por el prescaler—, de forma ciclica.

dica que se ha producido un incremento del valor, y su bit 0
—ALMS— que ha ocurrido una alarma. Ambas circunstancias se
sefialan con un 1, que se pone a 0 al leer el registro.

En el Cuadro A.11 aparecen las direcciones de los registros citados.

Registro Alias Direccion

Mode Register =~ RTT_MR 0x400E 1A30
Alarm Register RTT_AR 0x400E 1A34
Value Register ~RTT_VR 0x400E 1A38
Status Register RTT_SR 0x400E 1A3C

Cuadro A.11: Registros del temporizador en tiempo real del AT-
SAM3XS8E y sus direcciones de E/S

Es interesante realizar un comentario acerca del uso del RTT y de
la forma en que se generan las interrupciones. La interrupcién por in-
cremento estd pensada para generar una interrupcién periddica; segtiin
el valor del prescaler, el periodo puede ser desde inferior a una décima
de milisegundo hasta casi dos segundos. Eléctricamente la interrupciéon
se genera por flanco, por lo que al producirse basta con leer el RTT_SR
para evitar que se genere hasta el proximo incremento, comportamiento
tipico de una interrupcién periddica.

La interrupcién de alarma, sin embargo, se produce por nivel mien-
tras el valor del contador sea igual al de la alarma. Leer en este caso
el RTT_SR no hace que deje de senialarse la interrupcién, que se seguird

Status Register (RTT_SR): es el registro de estado. Su bit 1 —RTTINC— in-

A.6. Gestién de excepciones e interrupciones en el ATSAM3X8E

257

disparando hasta que llegue otro pulso de la frecuencia de actualizacion.
Este comportamiento no se evita cambiando el valor del RTT_AR pues la
condicién de interrupcién se actualiza con el mismo reloj que incrementa
el temporizador. Esto quiere decir que la interrupcién por alarma ests
pensada para producirse una vez y deshabilitarse, hasta que el progra-
ma decida configurar una nueva alarma por algiin motivo. Su uso como
interrupcién peridédica no es, por tanto, recomendable.

A.6. Gestion de excepciones e interrupciones
en el ATSAM3XSE

La arquitectura ARM especifica un modelo de excepciones que 16gi-
camente incluye el tratamiento de interrupciones. Es un modelo elabo-
rado y versatil, pero a la vez sencillo de usar, dado que la mayor parte de
los mecanismos son llevados a cabo de forma automatica por el hardware
del procesador.

Se trata de un modelo vectorizado, con expulsion —preemption— en
base a prioridades. Cada causa de excepcion, de las que las interrupcio-
nes son un subconjunto, tiene asignado un nimero de orden que iden-
tifica un vector de excepcién en una zona determinada de la memoria.
Cuando se produce una excepcién, el procesador carga el valor almace-
nado en ese vector y lo utiliza como direccién de inicio de la rutina de
tratamiento. Al mismo tiempo, cada excepcién tiene una prioridad que
determina cudl de ellas serd atendida en caso de detectarse varias a la
vez, y permite que una rutina de tratamiento sea interrumpida —ex-
pulsada— si se detecta una excepciéon con mayor prioridad, volviendo a
aquélla al terminar de tratar la més prioritaria. El orden de la prioridad
es inverso a su valor numérico, asi una prioridad de 0 es mayor que una
de 7, por ejemplo.

De acuerdo con este modelo, una excepcién es marcada como pen-
diente —pending— cuando ha sido detectada, pero no ha sido tratada
todavia, y como activa —active— cuando su rutina de tratamiento ya
ha comenzado a ejecutarse. Debido a la posibilidad de expulsiéon, en un
momento puede haber mas de una excepcién activa en el sistema. Cuan-
do una excepcién es a la vez pendiente y activa, ello significa que se ha
vuelto a detectar la excepcién mientras se trataba la anterior.

Cuando se detecta una excepcién, si no se estd atendiendo a otra
de mayor prioridad, el procesador guarda automaticamente en la pila
los registros r0@ a r3 y rl2; la direccién de retorno, el registro de estado
y el registro 1r. Entonces realiza el salto a la direccién guardada en el
vector de interrupcién y pasa la excepcion de pendiente a activa. En el
registro lr se escribe entonces un valor especial, llamado EXC_RETURN,
que indica que se esta tratando una excepcién, y que sera utilizado para

A.6. Gestién de excepciones e interrupciones en el ATSAM3X8E

258

volver de la rutina de tratamiento. La rutina de tratamiento tiene la
estructura de una rutina normal, dado que los registros ya han sido
salvados adecuadamente. Cuando se termina el tratamiento se retorna a
la ejecuciéon normal con una instruccién «pop» que incluya el registro pc.
De esta manera, el procesador recupera de forma automatica los valores
de los registros que habia guardado previamente, continuando con la
ejecucién de forma normal.

En el Cuadro A.12 aparecen las excepciones del sistema, con su nu-
mero, su prioridad y el niimero de interrupcién asociado. Por convenien-
cia, la arquitectura asigna a las excepciones un ntimero de interrupciéon
negativo, quedando el resto para las interrupciones de dispositivos.

Excepciéon TRQ Tipo Prioridad ~ Vector (offset)
1 — Reset -3 0x0000 0004
2 —14 NMI —2 0x00000008
3 —13 Hard fault -1 0x0000 000C
4 —12 Memory

management fault Configurable 0x00000010

5 —11 Bus fault Configurable 0x0000 0014
6 —10 Usage fault Configurable 0x0000 0018
11 =5 SVCall Configurable 0x0000 002C
14 -2 PendSV Configurable 0x0000 0038
15 —1 SysTick Configurable 0x0000003C
16 0 IRQO Configurable 0x0000 0040
17 1 IRQ1 Configurable 0x0000 0044

Cuadro A.12: Algunas de las excepciones del ATSAM3XS8E y sus vecto-
res de interrupcién

A.6.1. EIl Nested Vectored Interrupt Controller (NVIC)

Como hemos visto en el apartado anterior, la arquitectura ARM
especifica el modelo de tratamiento de las excepciones. Del mismo mo-
do, incluye entre los dispositivos periféricos del nicleo —Core Periphe-
rals— de la version Cortex-M3 de dicha arquitectura, un controlador
de interrupciones llamado Nested Vectored Interrupt Controller, NVIC.
Cada implementacion distinta de la arquitectura conecta al NVIC las

A.6. Gestién de excepciones e interrupciones en el ATSAM3X8E

259

interrupciones generadas por sus distintos dispositivos periféricos. En
el caso del ATSAMB3XS8E, dichas conexiones son fijas, de manera que
cada dispositivo tiene un niimero de interrupcién —y por tanto, un vec-
tor— fijo y conocido de antemano.

EI NVIC, ademéas de implementar el protocolo adecuado para sefialar
las interrupciones al ntcleo, contiene una serie de registros que permiten
al software del sistema configurar y tratar las interrupciones segin las
necesidades de la aplicacion. Para ello, dispone de una serie de registros
especificados en la arquitectura, que en el caso del ATSAM3XS8E permi-
ten gestionar las interrupciones de los periféricos del microcontrolador.
Veamos cudles son esos registros y su funcién.

Para la habilitacién individual de las interrupciones se dispone de
los conjuntos de registros:

» Interrupt Set Enable Registers (ISERx): escribiendo un 1 en cual-
quier bit de uno de estos registros se habilita la interrupcion aso-
ciada.

» Interrupt Clear Enable Registers (ICERx): escribiendo un 1 en cual-
quier bit de uno de estos registros se deshabilita la interrupcién
asociada.

Al leer cualquiera de los registros anteriores se obtiene la mascara de
interrupciones habilitadas, indicadas con 1 en los bits correspondientes.
Para gestionar las interrupciones pendientes se tienen:

v Interrupt Set Pending Registers (ISPRx): escribiendo un 1 en cual-
quier bit de uno de estos registros se marca la interrupcién aso-
ciada como pendiente. Esto permite forzar el tratamiento de una
interrupcién aunque no se haya senalado fisicamente.

v Interrupt Clear Pending Registers (ICPRx): escribiendo un 1 en
cualquier bit de uno de estos registros se elimina la interrupcién
asociada del estado pendiente. Esto permite evitar que se produzca
el salto por hardware a la rutina de tratamiento.

Al leer cualquiera de los registros anteriores se obtiene la lista de
interrupciones pendientes, indicadas con 1 en los bits correspondientes.
Una interrupcién puede estar en estado pendiente aunque no esté habi-
litada en la méscara vista mas arriba.

La lista de interrupciones activas se gestiona por hardware, pero se
puede consultar en los registros de solo lectura Interrupt Active Bit Re-
gisters (ICPRx). En ellos, un 1 indica que la interrupcién correspondiente
estd siendo tratada en el momento de la lectura. Las prioridades asocia-
das a las interrupciones se configuran en los registros Interrupt Priority

A.6. Gestién de excepciones e interrupciones en el ATSAM3X8E

260

Registers (IPRx). Cada interrupcién tiene asociado un campo de 8 bits en
estos registros, aunque en la implementaciéon actual solo los 4 de mayor
peso almacenan el valor de la prioridad, entre 0 y 15.

Por 1ltimo, existe un registro que permite generar interrupciones por
software, llamado Software Trigger Interrupt Register (STIR). Escribien-
do un valor en sus 9 bits menos significativos se genera la interrupcion
con dicho ntimero.

Para dar cabida a los bits asociados a todas las posibles interrup-
ciones —que pueden llegar a ser hasta 64 en la serie de procesadores
SAM3X—, el NVIC implementado en el ATSAM3XS8E dispone de 2 re-
gistros para cada uno de los conjuntos, excepto para el de prioridades
que comprende 8 registros. Dado un niimero de IRQ es sencillo calcular
cémo encontrar los registros y bits que almacenan la informacién que
se desea leer o modificar, sin embargo ARM recomienda utilizar ciertas
funciones en lenguaje C que suministra —en el modelo de cédigo del
sistema llamado CMSIS— y que son las que utilizaremos en nuestros
programas. A continuacién se describen las primitivas mas usadas.

= «void NVIC_EnableIRQ(IRQn_t IRQn)». Habilita la interrupcién cu-
yo niimero se le pasa como parametro.

= «void NVIC_DisableIRQ(IRQn_t IRQn)». Deshabilita la interrupcién
cuyo numero se le pasa como parametro.

= «uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn)». Devuelve un va-
lor distinto de 0 si la interrupcién cuyo ntimero se pasa estd pen-
diente; 0 en caso contrario.

= «void NVIC_SetPendingIRQ (IRQn_t IRQn)».Marca como pendien-
te la interrupciéon cuyo ntimero se pasa como parametro.

= «void NVIC_ClearPendingIRQ (IRQn_t IRQn)». Elimina la marca
de pendiente de la interrupciéon cuyo ndmero se pasa como pa-
rametro.

s «void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)». Asig-

na la prioridad indicada a la interrupcién cuyo ntimero se pasa
como parametro.

® «uint32_t NVIC_GetPriority (IRQn_t IRQn)». Devuelve la priori-

dad de la interrupcién cuyo niimero se pasa como parametro.

A.6.2. Interrupciones del ATSAM3XSE en el entorno
Arduino

Como se ha visto, buena parte de las tareas de salvaguarda y recu-
peracién del estado en la gestiéon de interrupciones son realizadas por el

© 00 N O Ut W N =

A.6. Gestién de excepciones e interrupciones en el ATSAM3X8E

261

hardware en las arquitecturas ARM. Gracias a esto el diseno de rutinas
de tratamiento queda muy simplificado.

La estructura de una RTI es idéntica a la de una rutina normal, con
la tinica restricciéon de que no admite ni devuelve pardmetros. El hecho
de que los registros que normalmente no se guardan —r0 ... r3— sean
preservados automéaticamente hace que el codigo de entrada y salida de
una RTT no difiera del de una rutina, y por ello, las tnicas diferencias
entre ambas estriban en su propio cédigo.

Teniendo en cuenta esta estructura, y teniendo en cuenta las funcio-
nes de gestiéon del NVIC que se han descrito mas arriba, lo tinico que se
necesita saber para implementar una RTT es el niimero de interrupcion.
Ademaés, para configurarla habria que modificar el vector correspondien-
te para que apunte a nuestra funcién. De nuevo, en el estdndar CMSIS
se dan las soluciones para estos requisitos. Todos los dispositivos tie-
nen definido su nimero de IRQ —que recordemos es fijo— de forma
regular. Del mismo modo, los nombres de las funciones de tratamiento
estan igualmente predefinidos, de manera que para crear una RTI pa-
ra un cierto dispositivo simplemente hemos de programar una funcién
con el nombre adecuado. El proceso de compilacién de nuestro progra-
ma se encarga de configurar el vector de manera transparente para el
programador.

Los Cuadros A.13, A.14 y A.15 muestran los simbolos que se deben
usar para referirse a las distintas IRQ segin el dispositivo, la descripcion
del dispositivo y el nombre de la rutina de tratamiento.

Una vez creada la RT1 solo es necesario configurar el NVIC adecuada-
mente. El proceso suele consistir en deshabilitar primero la interrupciéon
correspondiente, limpiar el estado pendiente por si se produjo alguna
falsa interrupcién durante el arranque del sistema y establecer la prio-
ridad —que por defecto suele ser 0 en el entorno Arduino—. Una vez
hecho esto, hemos de configurar el dispositivo de la manera que se desee
y habilitar la interrupcién correspondiente.

A continuacién se muestran unos fragmentos de c6digo que permiti-
rian establecer una RTT para el dispositivo PIOB.

AA_RTI_PIOB.c &

void setup() {

/* Otra configuracién del sistemax/

NVIC_DisableIRQ(PIOB_IRQn);

NVIC_ClearPendingIRQ(PIOB_IRQn);

NVIC_SetPriority(PIOB_IRQn, 0);

PIOsetupInt(EDGE, 1);

NVIC_EnableIRQ(PIOB_IRQn);

// RTI en C

http://lorca.act.uji.es/libro/introARM2016/codigo/AA_RTI_PIOB.c

[

1
12
13

TR W N =

A.6. Gestién de excepciones e interrupciones en el ATSAM3X8E 262

Simbolo Ndm Dispositivo RTI
SUPC_IRQn 0 Supply Controller (SUPC) «void SUPC_Handler()»
RSTC_IRQn 1 Reset Controller (RSTC) «void RSTC_Handler()»
RTC_IRQn 2 Real Time Clock (RTC) «void RTC_Handler()»
RTT_IRQn 3 Real Time Timer (RTT) «void RTT_Handler()»
WDT_IRQn 4 Watchdog Timer (WDT) «void WDT_Handler()»
PMC_IRQn 5 Power Management «void PMC_Handler()»

Controller (PMC)
EFCO_IRQN 6 Enhanced Flash

Controller 0 (EFCO) «void EFCO_Handler()»
EFC1_IRQn 7 Enhanced Flash

Controller 1 (EFC1) «void EFCL Handler()»
UART_IRQn 8 Universal Asynchronous

Receiver Transmitter «void UART_Handler()»
SMC_IRQn 9 Static Memory

Controller (SMC) «void SMC_Handler()»
PIOA_IRQn 11 Parallel I/O

Controller A, (PIOA) «void PIOA Handler()»
PIOB_IRQn 12 Parallel I/O

Controller B (PIOB) «void PIOB_Handler()»
PIOC_IRQn 13 Parallel I/O

Controller C (PIOC) «void PIOC_Handler()»
PIOD_IRQn 14 Parallel I/O

Controller D (PIOD)

«void

PIOD_Handler()»

Cuadro A.13: IRQs del ATSAMS3XS8E y sus rutinas de tratamiento aso-
ciadas. Parte 1

void PIOB_Handler() {

/* Coédigo especifico del tratamiento */

}

@ RTI en ensamblador
PIOB_Handler:

push {lr}

/* Cédigo especifico del tratamiento x*/

pop {pc}

AA_RTI_PIOB.s &

http://lorca.act.uji.es/libro/introARM2016/codigo/AA_RTI_PIOB.s

A.7. El controlador de DMA del ATSAM3XSE

263

Simbolo Nuam Dispositivo RTI
USARTO_IRQnN 17 USART 0 (USARTO0)
USART1_IRQn 18 USART 1 (USART1)
USART2_IRQn 19 USART 2 (USART?2) «void USART2_Handler()»
USART3_IRQn 20 USART 3 (USART3)

«void USARTO_Handler()»

«void USART1_Handler()»

«void USART3_Handler()»

HSMCI_IRQn 21 Multimedia Card

Interface (HSMCT) «void HSMCI_Handler()»
TWIO_IRQn 22 Two-Wire

Interface 0 (TWIO0) «void TWIO_Handler()»
TWI1_IRQn 23 Two-Wire

Interface 1 (TWI1) «void TWI1_Handler()»
SPIO_IRQn 24 Serial Peripheral

Interface (SPIO) «void SPIO_Handler()»
SSC_IRQn 26 Synchronous

Serial Controller (SSC) «void SSC_Handler()»
TCO_IRQN 27 Timer Counter 0 (TCO) «void TCO_Handler()»
TC1_IRQn 28 Timer Counter 1 (TC1) «void TC1l Handler()»
TC2_IRQn 29 Timer Counter 2 (TC2) «void TC2_Handler()»
TC3_IRQn 30 Timer Counter 3 (TC3) «void TC3_Handler()»
TC4_IRQn 31 Timer Counter 4 (TC4) «void TC4_Handler()»
TC5_IRQn 32 Timer Counter 5 (TC5) «void TC5_Handler()»
TC6_IRQN 33 Timer Counter 6 (TC6) «void TC6_Handler()»
TC7_IRQn 34 Timer Counter 7 (TC7) «void TC7_Handler()»
TC8_IRQN 35 Timer Counter 8 (TC8) «void TC8_Handler()»

Cuadro A.14: TRQs del ATSAMS3XS8E y sus rutinas de tratamiento aso-
ciadas. Parte 11

A.7. El controlador de DMA del ATSAM3XSE

El AHB DMA Controller (DMAC) es el dispositivo controlador de
acceso directo a memoria en el ATSAM3XS8E. Se trata de un dispositivo
con seis canales, con capacidad para almacenamiento intermedio de 8
0 32 bytes —en los canales 3 y 5— y que permite transferencias entre
dispositivos y memoria, en cualquier configuraciéon. Cada movimiento de
informacién requiere de la lectura de datos de la fuente a través de los
buses correspondientes, su almacenamiento intermedio y su posterior es-
critura en el destino, lo que requiere siempre dos accesos de transferencia

A.7. El controlador de DMA del ATSAM3XSE

264

Simbolo Nam Dispositivo RTI
PWM_IRQn 36 Pulse Width Modulation
Controller (PWM) «void PWM_Handler()»
ADC_IRQn 37 ADC Controller (ADC) «void ADC_Handler()»
DACC_IRQn 38 DAC Controller (DACC) «void DACC_Handler()»
DMAC_IRQn 39 DMA Controller (DMAC) «void DMAC_Handler()»

UOTGHS_IRQnN 40 USB OTG
High Speed (UOTGHS) «void UOTGHS_Handler()»

TRNG_IRQn 41 True Random Number

Generator (TRNG) «void TRNG_Handler()»
EMAC_IRQn 42 Ethernet MAC (EMAC) «void EMAC_Handler()»
CANO_IRQN 43 CAN Controller 0 (CANO) «void CANO_Handler()»
CAN1_IRQn 44 CAN Controller 1 (CAN1) «void CAN1 Handler()»

Cuadro A.15: IRQs del ATSAM3XS8E y sus rutinas de tratamiento aso-
ciadas. Parte III

de datos.

Ademés de un conjunto de registros de configuraciéon globales, cada
canal dispone de seis registros asociados que caracterizan la transaccion.
Mediante estos registros, ademas de indicar el dispositivo fuente y des-
tino y las direcciones de datos correspondientes, se pueden programar
transacciones multiples de bloques de datos contiguos o dispersos, tanto
en la fuente como en el destino.

El dispositivo, ademas de gestionar adecuadamente los accesos a los
distintos buses y dispositivos, es capaz de generar interrupciones para
indicar posibles errores o la finalizacién de las transacciones de DMA
programadas.

Para una informaciéon mas detallada, fuera del objetivo de esta breve
introduccién, se puede consultar el apartado 24. AHB DMA Controller
(DMAC) en la pagina 349 del manual de Atmel.

APENDICE

Breve guia de programaciéon en

ensamblador
indice
B.1. Variables 265
B.2. Estructuras de programacion 271
B.3. Estructuras iterativas 277

Este apéndice proporciona una breve guia en la que se muestra cémo
se implementa en ensamblador determinados aspectos de programacion.

B.1. Variables

Los programas utilizan variables para almacenar los datos con los
que trabajan. Reciben el nombre de variables debido al hecho de que los
programas pueden modificar los datos que almacenan. Desde el punto
de vista del programador, cada variable se identifica con un nombre, que
¢l mismo elige. Cuando el programador usa una variable en un progra-
ma, normalmente esta interesado en el valor que tomaré dicha variable
conforme se vaya ejecutando el programa. De lo que no suele ser cons-
ciente, es que en realidad, una variable es simplemente una direccién de
memoria a la que se le ha asociado un nombre, elegido por él, que la
identifica. Asi pues, el valor de una variable es por tanto el contenido de
dicha direccién de memoria.

Cuando se utiliza una variable en una asignacién, lo que se hace con
dicha variable depende de si aparece a la derecha o la izquierda de dicha

265

© 0 N O U ke W NN =

==
= o

1

1

B.1. Variables

266

asignacién. Cuando una variable aparece a la derecha de una asignacion,
lo que se hace es utilizar su valor; cuando aparece a la izquierda, lo que
se hace es cambiar su valor con el resultado de la expresion que haya
a la derecha de la asignaciéon. Por tanto, en el primer caso, se leerd
de memoria, en el segundo, se escribird. Si se considera por ejemplo la
siguiente asignacion:

varl = var2 + 5

Lo que realmente se realiza a nivel de la maquina es lo siguiente:

AB_add.s &
.data
varl: .space 4
var2: .word 77?7
text

ldr r@, =var2 @ En r0@ se pone la dir. de la variable var2
ldr ro, [r0] @ y se lee su contenido (su valor)

add r0, r0, #5 @ Se realiza la suma

ldr rl, =varl @ Se pone la dir. de la variable varl en rl
str ro, [rl] @ y se escribe su nuevo valor

wfi

B.1.1. Tipos de variables

Segun la naturaleza de la informacién que se quiera almacenar, las
variables pueden ser de diferentes tipos. Si se quiere guardar y trabajar
con nimeros enteros, lo mas eficiente serd usar la representacién natural
del procesador y trabajar con palabras, que en ARM son de 32 bits. Si
se quieren usar caracteres de texto, entonces se debera usar el formato
de datos fijado por algiun estdndar de codificacién de caracteres, por
ejemplo, el ASCII, donde cada caracter ocupa 8 bits.

El siguiente ejemplo, que pasa a mayusculas una letra dada, utiliza
datos del tipo caracter. En C se puede pasar una letra a maytusculas
utilizando la siguiente expresion:

charl = toupper(char2);

En Python, lo mismo se haria de la siguiente forma:
charl = char2.upper()
Los cédigos anteriores llaman a sendas funciones, que ademas de con-

vertir un caracter a mayusculas, incluyendo los caracteres acentuados,
no modifican aquellos caracteres que no son letras. El siguiente cédigo

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_add.s

© 0 N O Uk W N =

e e e
TR W N = O

© 0 N O Uk W N =

B.1. Variables

267

en ensamblador de ARM muestra una posible implementacién de lo an-
terior, incluyendo una subrutina muy béasica de conversién a maytsculas
que solo funcionara correctamente si el caracter que se quiere pasar a
mayusculas esta entre la ‘a’ y la ‘z’, o entre la ‘A’ y la ‘Z’, lo que no
incluye a los caracteres acentuados —como se puede comprobar consul-
tando un tabla con el codigo ASCII—. La subrutina de conversion tiene
en cuenta que para pasar a mayusculas un caricter entre ‘a’ y ‘z’, basta

con poner a 0 el bit 5 de dicho caracter.

AB_upper.s =

.data
charl: .space 1
char2: .byte ??7?7? @ Un caracter entre 'a’ y 'z’
.text
main: ldr r0, =char2 @ En r0 se pone la dir. de la variable char2

ldrb ro, [rO] @ y se lee su contenido (un byte)

bl upper @ Llama a upper(char2)

Udr rl, =charl @ Se pone la dir. de la variable charl en rl
strb ro, [rl1] @ Yy se escribe el caracter en maylsculas
wfi

upper: ldr rl, =0xDF @ Mascara para poner a 0 el bit 5
and ro, rl @ AND del caracter con la mascara
mov pc, lr

B.1.2. Conjuntos de datos del mismo tipo: vectores y
cadenas

A menudo se debe trabajar con conjuntos de elementos del mismo
tipo, sean caracteres o enteros. Los modos de direccionamiento de ARM
ofrecen una forma sencilla de hacer esto. A continuacién se muestra a
modo de ejemplo, cémo iniciar un vector de 3 elementos con los prime-
ros 3 ntmeros naturales, y uno de 3 caracteres con las primeras letras
mayusculas:

AB_vec_cad.s &

.data
vec: .Space 3x4 @ Espacio para 3 enteros
cad: .space 3 @ Yy para 3 caracteres
.text
ldr ro, =vec @ r0 tiene la direccidn de inicio del vector
dr r1, =1 @ Se pone un 1 en rl
str rl, [rO] @ Se escribe el 1 en la primera posicién

add rl1, rl, #1

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_upper.s
http://lorca.act.uji.es/libro/introARM2016/codigo/AB_vec_cad.s

10
11
12
13
14
15
16
17
18
19
20

B.1. Variables

str rl, [rO, #4] @ Un 2 en la segunda, desplazamiento 4
add rl, rl, #1
str rl, [r0, #8] @ Y un 3 en la tercera, desplazamiento 8

ldr r0, =cad @ Ahora con cad, su direccién en ro
ldr rl1, ='A’ @ Se pone el caracter 'A’" en rl
strb rl1, [rO] @ Se escribe el byte 'A’ en la lera posicidn

add rl1, rl1, #1

strb r1, [rO, #1] @ EL 'B’ en la segunda, desplazamiento 1
add rl1, rl, #1

strb rl, [r0, #2] @ Y el 'C’ en la tercera, desplazamiento 2

B.1.3. Datos estructurados

Un dato estructurado es un dato formado por un conjunto de datos,
generalmente de distinto tipo, que permite acceder de forma individual
a los datos que lo forman. Un ejemplo de declaracién de un dato estruc-
turado en C seria el siguiente:

struct Pieza { // Estructura de ejemplo
char nombre[10], ch;
int vall, val2;

Dada la declaracién anterior del dato estructurado «Piezay, se podria
definir una variable de dicho tipo, p.e. «p», y acceder a los componentes
de la variable «p» utilizando «p.nombre», «p.ch», «p.vall» y «p.val2».

En Python no existen datos estructurados como tales, sin embar-
go, es posible agrupar varios componentes en un contenedor creando
una instancia de una clase vacia o, mejor ain, por medio de la funcién
«namedtuple()» del médulo «collectionsy:

from collections import namedtuple
Pieza = namedtuple(’Pieza’, [’'nombre’, ’'ch’, ’'vall’, ’'val2’l])

En este caso, se podria crear una instancia de la clase «Pieza», p.e.,
«p», y acceder a sus componentes por medio de «p.nombrey», «p.chy,
«p.vally y «p.val2».

Un dato estructurado se implementa a bajo nivel como una zona de
memoria contigua en la que se ubican los distintos datos que lo forman.
El siguiente c6digo muestra cémo se podria reservar espacio para varias
variables del dato estructurado «Pieza» y cémo acceder a sus compo-
nentes. Dicho ejemplo comienza reservando espacio para un vector con
tres datos estructurados del tipo «Pieza». A continuacién, el c6digo del
programa modifica el valor de los distintos componentes de cada uno de

© 0 N O Uk W N =

NONON NN NN NN =R e e e e
0 N O Uk WY H O © 000U W N~ O

B.1. Variables

269

los elementos de dicho vector. Para simplificar el cddigo, éste escribe la
misma informacién en todos los elementos del vector y no modifica el
campo «nombre». Asi pues, en el ejemplo se puede ver:

1. Coémo se inicializan una serie de constantes utilizando la directiva
«.equ» con los desplazamientos necesarios para poder acceder a
cada uno de los componentes del dato estructurado a partir de su

direccién de comienzo.

2. Cémo se inicializa otra constante, «pieza», con el tamafio en bytes
que ocupa el dato estructurado, que servird para indicar cuanto
espacio se debe reservar para cada dato de dicho tipo.

3. Cémo se reserva espacio para un vector de 3 datos estructurados.

4. Coémo se escribe en las componentes «chry», «vally» y «val2» de
los tres elementos del vector anterior.

.data

AB_struct.s &

@ Constantes (se definen aqui para organizar la zona de datos,
@ pero no consumen memoria)

.equ
.equ
.equ
.equ
.equ
@ Datos
vecEj: .space

.text
ldr ro,
ldr ri,
ldr r2,
ldr r3,
strb r1,
str r2,
str r3,
add ro,
strb rl,
str r2,
str r3,
add ro,
strb rl1,
str r2,
str r3,
wfi

nombre, 0
ch, 10
vall, 12
val2, 16
pieza, 20

3 * pieza

=vecEj

='A’

=1000

=777

[rO, #ch]
[rO, #vall]
[rO, #val2]
#pieza

[rO, #chl]
[rO, #vall]
[rO, #val2]
#pieza

[rO, #ch]
[ro, #vall]
[rO, #val2]

@

@

D ® @ ® M ® @ @ @

Alineado a multiplo de 4

El tamafo de la estructura

Vector de 3 estructuras

r@ apunta al inicio del vector
Caracter a poner en chr

Nimero a poner en vall

Nimero a poner en val2

Se usan las constantes (.equ) para
escribir los datos sin tener que
memorizar los desplazamientos

Se pasa al siguiente elemento

Y se repite lo mismo

Tercer elemento...

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_struct.s

© 00 N O Ut W N =

NN N = = e e e e
N o= O © 00 N O Uk W N = O

B.1. Variables

270

B.1.4. Poniendo orden en el acceso a las variables

En los primeros ejemplos se ha seguido un método sencillo pero po-
co practico para acceder a las variables, dado que cada lectura requiere
del acceso previo a la direccién. Asi por ejemplo, para leer la variable
«char2y» del programa 0B_upper.s, primero se cargaba la direcciéon de
dicha variable en un registro y luego se utilizaba dicho registro para in-
dicar la direccién de memoria desde la que se debia leer su contenido;
mas adelante, para escribir en la variable «charly, primero se cargaba
la direccién de dicha variable en un registro y luego se utilizaba dicho
registro para indicar la direccién de memoria en la que se debia escribir
el resultado. Cuando se tiene un programa —o una subrutina, como se
verd en su momento— que debe acceder frecuentemente a sus variables
en memoria, resulta mas practico usar un registro que contenga la di-
reccién base de todas ellas, y usar desplazamientos para los accesos. A
continuacién se muestra un ejemplo en el que se utiliza dicho método
para acceder a: un entero, «valy, un caracter, «chr», un vector de en-
teros, «vect», y una cadena, «cad». En el ejemplo se utiliza la etiqueta
«orig» para marcar el origen del bloque de variables. El nombre de cada
variable se usa en realidad para identificar un desplazamiento constante
desde el origen hasta dicha variable, mientras que para las etiquetas de
cada variable se utiliza su nombre precedido por «_ ». El ejemplo utiliza
el registro r7 como registro base.

AB_desp.s =
.data
@ Constantes con los desplazamientos con respecto a orig
.equ ent, _ent - orig
.equ chr, _chr - orig
.equ vect, _vect - orig
.equ cad, _cad - orig
@ Nimero de elementos del vector y de la cadena
.equ vectTam, 10
.equ cadTam, 8

@ Datos

orig:

_ent: .space 4

_chr: .space 1
.balign 4

_vect: .space vectTam x 4

_cad: .space cadTam
.text
ldr r7, =orig @ r7 apunta al comienzo de los datos
ldr r1,=1000 @ Se escribe el numero 1000
str rl, [r7, #ent] @ en el entero

ldr rl1, ='A’ @y la letra 'A’

0B_upper.s
http://lorca.act.uji.es/libro/introARM2016/codigo/AB_desp.s

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

[L

—

w

B.2. Estructuras de programacién 271
strb rl, [r7, #chr] @ en el caracter
ldr r0, =vect @ Para usar un vector, se carga su
add ro, ro, r7 @ origen en r@
ldr r1, =1 @ y se escribe 1, 2 y 3 como antes
str rl, [rO] @ Se escribe el 1 en la primera posicidn
add rl1, rl1, #1
str rl, [r0O, #4] @ ElL 2 en la segunda, desplazamiento 4
add rl1, rl1, #1
str rl, [r0, #8] @Y el 3 en la tercera, desplazamiento 8
ldr r0, =cad @ Ahora se carga la dir. de la cadena
add ro, ro, r7 @ en el registro r0@
ldr rl1, ='A’ @ y se escribe 'A’, 'B" y 'C’
strb r1, [rO] @ Se escribe el byte 'A’
add rl1, rl1, #1
strb rl, [r0, #1] @ 'B’ en la segunda, desplazamiento 1
add rl1, rl1, #1
strb rl, [r0, #2] @Y 'C’ en la tercera, desplazamiento 2
wfi
B.2. Estructuras de programacion
Una vez se ha visto cémo se pueden usar datos de diversos tipos
y c¢cémo organizar los programas para poder acceder a ellos de forma
mas sencilla —desde el punto de vista del programador—, se vera ahora
cémo implementar las estructuras de control del flujo mas comunes en
los lenguajes de alto nivel.
B.2.1. Estructuras condicionales
La primera de las estructuras condicionales nos permite, simplemen-
te, ejecutar o no cierta parte del c6digo en funcién de una expresién que
se evalta a verdadero, en cuyo caso se ejecuta el codigo, o a falso, caso
en el que no se ejecuta. Se trata de la estructura condicional si, o if en
inglés. La estructura if se escribe en C como: if

if (condiciodn) {
//
// Cédigo a ejecutar si se cumple la condicién
//

Y en Python:
if condicién:
#
Cédigo a ejecutar si se cumple la condicidn

0o N O O ok W N =W N

Ju—

=W N

o N O Ut ok W N

B.2. Estructuras de programacién

272

#

La implementacién en ensamblador de ARM es evidente. Consiste
en evaluar la condicién y, si el resultado es falso, saltar més alla del
codigo condicionado. En el caso de que sea una condiciéon simple y se
utilice una sola instruccién de salto condicional, la condicién del salto
serd la negacion de la que se evalta en el lenguaje de alto nivel. Asi, si se
evaliia una igualdad, se saltard en caso de desigualdad; si se evalia una
condicién de menor que, se saltara en caso de mayor o igual, etcétera. A
continuacién se muestran un par de ejemplos tanto en Python como en
ensamblador en los que se utiliza la estructura condicional if. El primero
de los ejemplos muestra como ejecutar un fragmento de codigo solo si el
valor de «a» es igual a «b».

if a ==
#
Cédigo a ejecutar si a ==
#
AB_if_equal.s &=
.text
cmp r0, rl @r0 es ay rl es b, se evalta la condicién,
bne finsi @ y se salta si se da la condicién contraria
@
@ Cédigo a ejecutar si a ==
@
finsi: @ Resto del programa
wfi

El segundo de los ejemplos, mostrado a continuacién, muestra cémo
ejecutar un fragmento de c6digo solo si el valor de «a» es menor que «b».

if a < b:
#
Codigo a ejecutar si a < b
#
AB_if_lessthan.s &
.text
cmp r0, rl @r0 es ayrlesb, se evalia la condicidn,
bge finsi @ y se salta si se da la condicién contraria
@
@ Cédigo a ejecutar si a < b
@
finsi: @ Resto del programa
wfi

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_if_equal.s
http://lorca.act.uji.es/libro/introARM2016/codigo/AB_if_lessthan.s

© 0 N O Ut ok W N =

o N o Ok W N

DUt e W N

B.2. Estructuras de programacién

273

Por otro lado, cuando lo que se desea es ejecutar alternativamente
un trozo de cédigo u otro en funcién de que una condicién se evalie a
verdadero o falso, se puede utilizar la estructura if-else. Un fragmento
de cédigo se ejecuta en caso de que la condicién sea verdadera y otro,
en caso de que la condicién sea falsa, de manera que nunca se ejecutan
ambos fragmentos. Dicha estructura se escribe en C como:

if (condicidn) {
//
// Cédigo a ejecutar si se cumple la condicidn
//
} else {
//
// Cédigo a ejecutar si no se cumple la condicidn
//

Y en Python:
if condicién:
#
Cédigo a ejecutar si se cumple la condicidn
#
else:
#
Cédigo a ejecutar si no se cumple la condicidn
#

La implementaciéon en ensamblador utiliza en este caso una evalua-
cién y un salto condicional al segundo bloque, saltandose de esta forma
el primero de los dos bloques, que debe terminar necesariamente con
un salto incondicional para no ejecutar el bloque alternativo. Si se sigue
una estructura similar al if visto antes, se pondria primero el cédigo
correspondiente a la evaluacion verdadera y a continuacion el otro. Se
podria, sin embargo, invertir el orden de los bloques de cédigo de forma
que se ejecute primero el correspondiente a la evaluacién falsa y luego el
de la verdadera. En esta segunda implementacién, el salto se evaluaria
con la misma légica que la comparacién en el lenguaje de alto nivel. Asi,
el siguiente programa en Python:

if a ==
#
Cédigo a ejecutar si a ==
#
else:
#

if-else

-

© 0 N O U W N

= = e
N = O

© 0 N O U W N

= = e
N = O

=

w N O Ot s W N

B.2. Estructuras de programacién

274

Codigo a ejecutar si a !=b
#
Se escribiria en ensamblador de ARM como:
AB_if_equal_else.s &=
.text
cmp r0, rl @r0esayrlesb, se evalla la condicidn,
bne else @ y se salta si se da la condicién contraria
@
@ Cédigo a ejecutar si a ==
@
b finsi @ Se salta el segundo bloque
else: @
@ Cédigo a ejecutar si a '= b
@
finsi: @ Resto del programa
wfi
O, invirtiendo la posiciéon de los bloques:
AB_if_equal_else2.s =
.text
cmp r0, rl @r0esayrlesb, se evalla la condicidn,
beq if @ y se salta si se da la condicidn
@
@ Cédigo a ejecutar si a '= b
@
b finsi @ Se salta el segundo bloque
if: @
@ Cédigo a ejecutar si a ==
@
finsi: @ Resto del programa
wfi
Por otro lado, en el caso de que el programa en Python fuera:
if a < b:
#
Codigo a ejecutar si a < b
#
else:
#
Cédigo a ejecutar si a >= b
#

El equivalente en ensamblador seria:

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_if_equal_else.s
http://lorca.act.uji.es/libro/introARM2016/codigo/AB_if_equal_else2.s

© 0 N O U ke W N =

= = e
N o= O

© 0 N O Uk W N =

= = e
N = O

B.2. Estructuras de programacién 275
AB_if_lessthan_else.s &
.text
cmp r0, rl @r0 es ay rles b, se evalta la condicién,
bge else @ y se salta si se da la condicidn contraria
@
@ Cédigo a ejecutar si a < b
@
b finsi @ Se salta el segundo bloque
else: Q@
@ Cdédigo a ejecutar si a >= b
@
finsi: @ Resto del programa
wfi
O, invirtiendo la posiciéon de los bloques:
AB_if_lessthan_else2.s &
.text
cmp r0, rl @r0 es ay rles b, se evalta la condicién,
blt if @ y se salta si se da la condicién
@
@ Cédigo a ejecutar si a >= b
@
b finsi @ Se salta el segundo bloque
if: Q@
@ Cédigo a ejecutar si a < b
@
finsi: @ Resto del programa
wfi
B.2.2. Estructuras condicionales concatenadas
Con mucha frecuencia las circunstancias a evaluar no son tan sen-
cillas como la dicotomia de una condicién o su negacién, sino que en
caso de no cumplirse una condicién, se debe evaluar una segunda, luego
tal vez una tercera, etcétera. De esta forma, es frecuente encadenar es-
tructuras if-else de manera que en caso de no cumplirse una condicién
se evaltia una segunda dentro del cédigo alternativo correspondiente al
else. La frecuencia de esta circunstancia hace que en algunos lenguajes
de programacion existan las construcciones if-elseif-elseif-. . ., pudiendo if-elseif

concatenarse tantas condiciones como se quiera, y terminando o no en
una sentencia else que identifica un cédigo que debe ejecutarse en el caso
de que ninguna condicién se evaliile como verdadera.

La implementacién de estas estructuras es tan sencilla como seguir
un if-else como el ya visto y, en el cdédigo correspondiente al else imple-
mentar un nuevo if-else o un if en el caso de que no haya else final. En

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_if_lessthan_else.s
http://lorca.act.uji.es/libro/introARM2016/codigo/AB_if_lessthan_else2.s

=

© 0 N O O W N

© 00 N O U W Ny =

© 0 N O U W N =

R e o e
N N =

B.2. Estructuras de programacién

276

este caso, se recomienda utilizar la codificacion del if-else poniendo en
primer lugar el cédigo correspondiente al if, como en la primera opcién
del apartado anterior. En realidad, es posible hacerlo de cualquier forma,
incluso mezclarlas, pero en el caso de no proceder de forma ordenada
serd mucho mas facil cometer errores.

Se muestran a continuaciéon un par de ejemplos, con y sin else final.
El primero de los casos, con else final, seria en C:

if (a < b) {

// Cédigo a ejecutar si la primera condicién es verdadera
} else if (a > c) {

// Cédigo a ejecutar si la segunda condicidén es verdadera
} else if (a < 2500)

// Cédigo a ejecutar si la tercera condicién es verdadera
} else {

// Cédigo en caso de que todas las anteriores sean falsas

En Python:

if a < b:

Cdédigo a ejecutar si la primera condicién es verdadera
elif a > c:

Coédigo a ejecutar si la segunda condicidén es verdadera
elif a < 2500:

Codigo a ejecutar si la tercera condicién es verdadera
else:

Coédigo en caso de que todas las anteriores sean falsas

}
Y en ensamblador de ARM:
AB_if_elseif.s &

.text
cmp r0, rl @r0 es ayrlesb, se evalla la condicién,
bge elsel @ Yy se salta si se da condicién contraria
@ Cédigo a ejecutar si la primera condicidén es verdadera
b finsi @ Se saltan el resto de bloques

elsel: cmp r0, r2 @rd es ayr2esc, se evalla la condicidn
ble else2 @ vy se salta si se da la condicidn contraria
@ Cdédigo a ejecutar si la segunda condicidén es verdadera
b finsi @ Se saltan el resto de bloques

else2: ldr r3, =2500
cmp r0, r3 @ rd es ay r3 vale 2500, se evalua la condicidn,
bge else3 @ Yy se salta si se da la condicidn contraria

@ Cédigo a ejecutar si la tercera condicidén es verdadera
b finsi @ Se salta el Ultimo bloque

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_if_elseif.s

15
16
17

B I R N N

N o A W

© 0w N O Ut s W N =

e e e
G W N = O

B.3. Estructuras iterativas 277

else3: @ Cédigo en caso de que todas las anteriores sean falsas
finsi: @ Resto del programa
wfi

El segundo de los ejemplos no tiene else final. El c6digo en C seria:

if (a < b) {

// Cédigo a ejecutar si la primera condicién es verdadera
} else if (a > c) {

// Cédigo a ejecutar si la segunda condicién es verdadera
} else if (a < 2500)

// Cédigo a ejecutar si la tercera condicién es verdadera

En Python:

if a < b:

Codigo a ejecutar si la primera condicién es verdadera
elif a > c:

Cédigo a ejecutar si la segunda condicién es verdadera
elif a < 2500:

Cédigo a ejecutar si la tercera condicién es verdadera

}
Y en ensamblador de ARM:
AB_if_elseif2.s &

.text
cmp ro, rl @r0esayrlesb, se evallta la condicidn,
bge elsel @ Yy se salta si se da condicién contraria
@ Cédigo a ejecutar si la primera condicién es verdadera
b finsi @ Se saltan el resto de bloques

elsel: cmp ro0, r2 @r0 esay r2esc, se evalla la condicioén
ble else2 @ Yy se salta si se da la condicidn contraria
@ Cédigo a ejecutar si la segunda condicidén es verdadera
b finsi @ Se saltan el resto de bloques

else2: ldr r3, =2500
cmp r0, r3 @ r0 es a y r3 vale 2500, se evalua la condiciodn,
bge finsi @ Yy se salta si se da la condicidn contraria

@ Cédigo a ejecutar si la tercera condicidén es verdadera
finsi: @ Resto del programa
wfi

B.3. Estructuras iterativas

Las estructuras de programacién iterativas o repetitivas son las que
ejecutan repetidas veces el mismo bloque de c6digo mientras se cumpla

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_if_elseif2.s

© 0 N O Ut W N =

==
= o

B.3. Estructuras iterativas 278

una condicién de permanencia —o hasta que se dé una condicién de
salida—. En estas estructuras se tiene siempre un salto hacia una di-
reccion anterior para permitir que se vuelva a ejecutar el cédigo previo.
Ademas, se evaltia una condiciéon que determina, de una u otra forma,
si el codigo se sigue repitiendo o no.

B.3.1. Estructura for

Cuando existe un indice asociado a la estructura repetitiva, de tal
manera que las iteraciones contintian en funcién de alguna condicién
asociada a él, se tiene una estructura for. Normalmente, el indice se va for
incrementando y la iteraciéon termina cuando alcanza un cierto valor,
aunque no tiene por qué ser necesariamente asi. En el caso més sencillo,
el niimero de iteraciones se conoce a priori. Vemos un ejemplo de cémo
implementar esta estructura.
El cédigo en C:

for (i = 0; i < 100; i++) {
// Cédigo a repetir 100 veces

Python no posee una estructura for como la mostrada anteriormente,
y que es comun a muchos lenguajes de programacién. En su lugar, la
estructura for de Python recorre uno por uno los elementos de una lista.
Asi, para conseguir en Python una estructura for similar a la anterior,
se debe crear primero una lista, «range(0,n)», para luego recorrerla:

for i in range(0, 100):
Codigo a repetir 100 veces

En ensamblador de ARM, la estructura for se puede implementar
de la siguiente forma:

AB_for.s &

.text

ldr ro, =0 @ r0 es el indice i

ldr rl, =100 @ rl mantiene la condicién de salida

for: cmp r0, rl @ Lo primero que se hace es evaluar la condicidn

bge finfor @ de salida y salir del bucle si no se cumple
@ Cédigo a repetir 100 veces
@ ...

add r0, r0, #1 @ Se actualiza el contador

b for @ Se vuelve al comienzo del bucle

finfor: @ Resto del programa
wfi

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_for.s

D Ut W N

=W N

© 0 N O Utk Ww N =

NN = = = e e e e
= O © 00 N O Uk W N = O

B.3. Estructuras iterativas

279

Un bucle for se puede utilizar por ejemplo para recorrer los elementos
de un vector. Un programa que sume todos los elementos de un vector
quedaria como sigue en C:

int V[5] = {1, 2, 3, 4, 5};

int VTam = 5;

int sum = 0;

for (i = 0; i < VTam; i++) {
sum = sum + V[il;

}

En Python, de la siguiente forma:

V = [1, 2: 31 4: 5]

sum = 0
for i in range(0, len(V)):
sum = sum + V[i]
Y en ensamblador de ARM:
AB_for_vector.s =
.data
V: .word 1, 2, 3, 4, 5
VTam: .word 5
sum: .Space 4
.text
ldr ro, =0 @ r0 es el indice i
ldr rl, =VTam
ldr rl1, [rl1] @ rl mantiene la condicién de salida
dr r2, =V @ r2 tiene la direccién de comienzo de V
ldr r3, =0 @ r3 tiene el acumulador
for: cmp r0, rl @ Lo primero que se hace es evaluar la condicién
bge finfor @ de salida y salir del bucle si no se cumple
sl r4, r0, #2 Q@ rd <- ix4
dr rd4, [r2, rd4] @ rd4 <- V[i]
add r3, r3, r4 @ r3 <- sum + V[i]
add r0, r0, #1 @ Se actualiza el contador
b for @ Se vuelve al comienzo del bucle
finfor: ldr r4, =sum
str r3, [r4] @ Se guarda el acumulado en sum
wfi

B.3.2. Estructura while

En el caso de la estructura for, vista en el apartado anterior, se
mantiene un indice que se actualiza en cada iteraciéon de la estructu-
ra sin necesidad de que en los lenguajes de alto nivel aparezca dicha

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_for_vector.s

N OOt ke W =

ot W N

B.3. Estructuras iterativas

280

actualizacion en el bloque de cédigo correspondiente. Sin embargo, la
permanencia o salida se realiza evaluando una condiciéon que, al margen
de incluir el indice, podria ser cualquiera. Por eso, la estructura iterativa
por excelencia, con toda la flexibilidad posible en cuanto a su implemen-
tacion, es la estructura while. En esta estructura simplemente se evalia
una condicién de permanencia, sea cual sea, y se sale de las repeticiones
en caso de que sea falsa. El resto del cédigo no tiene ninguna restric-
cién. A continuacién se muestra dicha estructura en C, en Python y en
ensamblador de ARM.
La estructura while en C es:

while (a < b) {
// Cédigo a repetir

En Python:

while a < b:
Cédigo a repetir

Y en ensamblador de ARM:

AB_while.s &
.text
while: cmp r0, rl @r0 es ay rlesb, se evalia la condicidn
bge finwhile @ y si no se da, se sale
@ Cédigo a repetir

b while @ Se vuelve al comienzo del bucle
finwhile: @ Resto del programa
wfi

Sabiendo que una de las formas de indicar la longitud de una cadena
es la de anadir un byte a 0 al final de la cadena, una posible utilidad
de un bucle while seria la de recorrer todos los elementos de una cadena
para, por ejemplo, calcular su longitud. Puesto que el lenguaje C utiliza
esta técnica para indicar el final de una cadena, un programa en C que
haria lo anterior seria:

char cad[] = "Esto es una cadena";
int long = 0;
while (cad[long] !'= 0) {
long = long + 1;
}

En Python, una cadena es en realidad un objeto y la forma correcta
de obtener su longitud es pasando dicha cadena como parametro a la
funcién «len()». Por ejemplo, «len(cad)» devolveria la longitud del

while

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_while.s

=W N

© 0 N O U W N =

e e e e =
D U W N = O

B.3. Estructuras iterativas 281

objeto «cad». Sin embargo, es posible simular el cédigo C anterior en
Python sin méas que anadir un byte a 0 al final de la cadena y utilizando
un bucle while para obtener su longitud.

cad = "Esto es una cadena\0"

long = 0;

while cad[long] != 0:

long = long + 1
Por su parte, la implementacién en ensamblador de ARM seria:
AB_long_cad.s &

.data

cad: .asciz "Esto es una cadena"
.align 2

long: .space 4
.text
ldr r0, =cad @ r0 tiene la dir. de inicio de cad
ldr r1, =0 @ rl tiene la longitud

while: 1ldrb r2, [r0,rl] @ r2 <- cad[long]
cmp r2, #0
beq finwh @ Sale si cad[long] ==

add r1, rl1, #1 @ long = long + 1

b while @ Vuelve al comienzo del bucle

finwh: 1dr r2, =long
str rl, [r2] @ Almacena la longitud
wfi

Volviendo a la estructura while, si se observa con detalle la implemen-
tacion anterior, o la mas esquematica mostrada en 0B_while.s, se puede
ver que el salto de salida vuelve a una nueva evaluacién de la condicién
seguida de otro salto. Esta forma de proceder es ineficaz porque se usan
dos saltos cuando con uno seria suficiente —y los saltos suelen afectar
negativamente a la velocidad de ejecucién de instrucciones—. Por eso,
la implementacién real de un bucle while se realiza en dos etapas:

= Primero se evaliia la condicién que se tiene que cumplir para no
ejecutar el bucle.

s En el caso de entrar en el bucle, se evalta al final del bucle si és-
te se debe volver a ejecutar. Conviene tener en cuenta que en este
segundo salto condicional, la condicion de salto es la de permanen-
cia en el bucle y, por tanto, la misma que se puede observar en un
lenguaje de alto nivel, no la contraria, como ocurre habitualmente.

El ejemplo 6B while.s implementado de esta segunda forma que-
daria como se muestra a continuacién. Como se puede ver, la etiqueta

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_long_cad.s
0B_while.s
0B_while.s

0 N O Ut e W NN

B.3. Estructuras iterativas

282

while ahora estd situada al comienzo del cédigo que se quiere repetir,
no en la primera evaluacién. Ademas, al final del bucle se decide si se
vuelve al comienzo del bucle, en lugar de volver de forma incondicional
al comienzo del bucle.

while:

AB_while2.s =
.text
cmp r0, rl @r0es ayrlesb, se evalla la condicidn
bge finwhile @ Yy si no se da, se sale
@ Cdédigo a repetir
cmp r0, rl @ Se vuelve a evaluar la condicidén y si se da,
blt while @ se vuelve al comienzo del bucle

finwhile: @ Resto del programa

wfi

http://lorca.act.uji.es/libro/introARM2016/codigo/AB_while2.s

APENDICE

Guia rapida del ensamblador
Thumb de ARM

En la siguiente hoja se proporciona una guia réapida del ensamblador
Thumb de ARM.

283

284

Guia rapida del ensamblador Thumb de ARM

D ZN 0L[sy] 40U PY — PY SY ‘py ‘py I0x BUODIIP B[B UQIORIOY
DZN 0L[sy] YSV Py — PY SH ‘PY ‘py Ise
1€-0 *Yiyg osuey D ZN WS YSV WY — pY 3FTUS# ‘WY ‘py Ise BYIDIIP B[€ 0QUILLY
DZN Ofsy] << py — pY Sy ‘PY ‘PY IST
16-0 ‘¥Is osuey D 7ZN PUS << Wy — PY IFTUS# ‘wy ‘pY IST BUDDIOP €[© 0J1507]
DZN 0L[sy] >> py — pY sY ‘PY ‘PY TST
160 :JIYS osuey D7 N Pgg >> wy — pY 1FTUSH# ‘W ‘pY TST epiombzr e[© 001307 xezerdse(
7 N WY NV Uy unsoes ssey 10y wy ‘uy 3s3 s91q eqonaduo))
7Z N wy ILON — PH wy ‘pYy uAwW LON
7 N wy YOX PY — PY wy ‘py ‘py I0® Adimiux@ pov qOX
Z N wy 4O P — PY wy ‘py Py II0 Hqo
Z N wy LON ANV PY — PY wy ‘PY ‘PY 0T ($)1q TeL10q) LON ANV
Z N wy ANV PH — PY wy ‘py ‘py pue aNVv seo1801
G670 QWU odury ADZN QUIU] — Uy uNges sy Oy guur# ‘uy duo ojRIpaWIU]
ADZN ury + wy unges s8R "0y wy ‘uy umo ope3au 10d eIRdUIO))
*019s1301 Iombreno e o13s13a1 Iembren)) ADZN ury — wy unges s8R "0y wy ‘uy dwo vredwo) xereduro))
ZN Py * wy — PY Py ‘wy ‘py Tnw eordnynyy ~ Tedrdiymil
AD7ZN mI— — Py uy ‘py Seu TIe3oN
*(e1qered e opeaul[e) gOG—() ‘WU OSuRY wu] — JS — JdS wul# ‘ds ‘dS qns dS op Io[eA
ADZN ury — Uy — py wy ‘uy ‘py qns [elg eXelg |
'GGZ—() :Quu] ouey] ADZN QuIu] — Py — PY guwul# ‘pyY ‘py qus $)1q Q OyeIpoUIU]
‘)~ rgwu] o3uey ADZN ewu] — Wy — Py ~ cwul# ‘uy ‘py qns $)1q ¢ oyerpawIu] Ie)seoy
*(exqered e opeaulfe) (g0T—0 ‘WUl oSuey wuy + JS — Py wul# ‘dS ‘PY PPe S OPSOp UQIIIIP IRL))
‘(rexqered e opeaur[e) gOG—() ‘WU OSURY wu] + JS — dS wur# ‘ds ‘dS ppe dS e I01ep
wy + py — Py wy ‘PY ‘PY PPE IH B IH ‘IH ® O ‘O ® IH
ADZN wy + WYy — Py wy ‘uy ‘py ppe oT® o]
"GGg—0 rguru] ogueyy ADZN guul + pY — PY gWUI# ‘PY ‘PY PPe S31q 8 ojeIpawu]
‘)0 :gwu] oSury ADZN ewu] + vy — pYy cuul# ‘uy ‘py ppe $)1q ¢ oyeIpowIU] Jewng
wy — PY wy ‘py Aow IH e IH ‘TH ® O ‘O ® IH
7 N uy — Py wy ‘py Aouw o] R O]
'GGZ—() :QuU] oSuey 7 N guiu] — Py guuI# ‘py Aowm $)1q Q OjeIpoUIU] JOAOJAL
SeJON BZI[EN)OY uody Jope[quiesuy uomeradQ

(2/1) qunyI, INYV seuoldonjsul ap ojunfuo)

285

Conjunto de instrucciones ARM Thumb (2/2)

Guia rapida del ensamblador Thumb de ARM

Operacién Ensamblador Accién Notas
Cargar Con desp. inm., palabra ldr Rd, [Rn, #Inm] Rd + [Rn + Inm] Rango Inm: 0-124, multiplos de 4.
media palabra ldrh Rd, [Rn, #Inm] Rd ¢ ZeroExtend([Rn + Inm|is0) Bits 31:16 a 0. Rango Inm: 0-62, pares.
byte 1drb Rd, [Rn, #Inm] Rd ¢ ZeroExtend([Rn + Inm]7p) Bits 31:8 a 0. Rango Inm: 0-31.
Con desp. en registro, palabra 1dr Rd, [Rn, Rm] Rd + [Rn + Rm]
media palabra ldrh Rd, [Rn, Rm] Rd <« ZeroExtend([Rn + Rm]|i5,0) Bits 31:16 a 0.
media palabra con signo 1ldrsh Rd, [Rn, Rm] Rd « SignExtend([Rn + Rm]is.0) Bits 31:16 igual al bit 15.
byte 1drb Rd, [Rn, Rm] Rd + ZeroExtend([Rn + Rm]|70) Bits 31:8 a 0.
byte con signo ldrsb Rd, [Rn, Rm] Rd « SignExtend([Rn + Rm]ro) Bits 31:8 igual al bit 7.
Relativo al PC 1dr Rd, [PC, #Inm] Rd « [PC + Inm] Rango Inm: 0-1020, multiplos de 4.
Relativo al SP ldr Rd, [SP, #Inm] Rd « [SP + Inm)] Rango Inm: 0-1020, multiplos de 4.
Almacenar Con desp. inm., palabra str Rd, [Rn, #Inm] [Rn + Inm] + Rd Rango Inm: 0-124, multiplos de 4.
media palabra strh Rd, [Rn, #Inm] [Rn + Inmli5.0 < Rdiso Rdas;.16 se ignora. Rango Inm: 0-62, pares.
byte strb Rd, [Rn, #Inm] [Rn + Inm]7o + Rdro Rdsi.s se ignora. Rango Inm: 0-31.
Con desp. en registro, palabra str Rd, [Rn, Rm] [Rn +Rm] < Rd
media palabra strh Rd, [Rn, Rm] [Rn + Rm]|i5.0 + Rdiso Rdsi.16 se ignora.
byte strb Rd, [Rn, Rm] [Rn + Rm]70 + Rdro Rds;.g se ignora.
Relativo al SP str Rd, [SP, #Inm] [SP + Inm] «+ Rd Rango Inm: 0-1020, multiplos de 4.
Apilar Apilar push <loreglist> Apila registros en la pila
Apilar y enlazar push <loreglist+LR> Apila LR y registros en la pila
Desapilar Desapilar pop <loreglist> Desapila registros de la pila
Desapilar y retorno pop <loreglist+PC> Desapila registros y salta a la direccién cargada en el PC
Saltar Salto condicional b{cond} <label> Si {cond}, PC « label (rango salto: —252 a +258 bytes de la instruccién actual).
Salto incondicional b <label> PC < label (rango salto: +2 KiB de la instruccién actual).
Salto largo y enlaza bl <label> LR « direccién de la siguiente instruccién, PC <+ label
(Instruccién de 32 bits. Rango salto: £4 MiB de la instruccién actual).
Extender Con signo, media a palabra sxth Rd, Rm Rdsi.0 < SignExtend(Rmis.0)
Con signo, byte a palabra sxtb Rd, Rm Rdsi.0 < SignExtend(Rmy.o)
Sin signo, media a palabra uxth Rd, Rm Rds1.0 ZeroExtend(Rmys.o)
Sin signo, byte a palabra uxtb Rd, Rm Rds1.0 + ZeroExtend(Rmr.g)
{cond} EQ Igual NE Distinto MI Negativo PL Positivo VS Desbordamiento
HI Mayor sin signo CS Mayor o igual sin signo CC Menor sin signo LS Menor o igual sin signo VC No desbordamiento
GT Mayor que GE Mayor o igual LT Menor que LE Menor o igual que

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.

3.1.
3.2.
3.3.
3.4.

3.5.
3.6.

4.1.
4.2.

Indice de figuras

Componentes de un computador 3
Componentes de un procesador 7
Modo de direccionamiento directo a registro 17
Modo de direccionamiento directo a memoria 18
Modo de direccionamiento indirecto con registro 19
Modo de direccionamiento indirecto con desplazamiento . . . 19
Disposicién de los bytes de una palabra 30
Ventana principal de QARMSim 42
Cuadro de didlogo de preferencias de QARMSim 43
QtARMSim mostrando el programa «02_cubos.s» 44
QtARMSim en el modo de simulacion 45
QtARMSim sin paneles de registros y memoria 46
QtARMSim después de ejecutar el codigo maquina 49
QtARMSim después de ejecutar dos instrucciones 51
Edicién del registro rl oL Lo 52
Punto de ruptura en la direccién 0x0000100E 53
Programa detenido al llegar a un punto de ruptura 54
Registros visiblesde ARM 70
Registro de estado —current processor status register— . . . 71
Visualizaciéon de los indicadores de condicién 72

Formato de instruccién usado por las instrucciones de su-
ma y resta con tres registros o con dos registros y un dato

inmediatode 3 bits Lo L 85
Codificacion de la instruccién «add r3, r2, rly 85
Formato de las instrucciones «mov rd, #Inm8», «cmp rd, #Inm8»,

«add rd, #Inm8» y «sub rd, #Inm8» 86
Modo de direccionamiento indirecto con desplazamiento . . . 104

Formato de las instrucciones de carga/almacenamiento de
bytes y palabras con direccionamiento indirecto con despla-
zamiento Lo Lo 106

286

Indice de figuras

287

4.3. Formato de las instrucciones de carga/almacenamiento de
medias palabras con direccionamiento indirecto con despla-
zamiento. Lo oL

4.4. Formato de la instruccion de carga con direccionamiento re-
lativo al contador de programa

4.5. Formato A de las instrucciones de carga/almacenamiento con
direccionamiento indirecto con registro de desplazamiento . .

4.6. Formato B de las instrucciones de carga/almacenamiento con
direccionamiento indirecto con registro de desplazamiento . .

5.1. Esquema general de un programa en ensamblador de ARM
5.2. Formato de la instruccion de salto incondicional
5.3. Formato de las instrucciones de salto condicional

6.1. Llamada y retorno de una subrutina
6.2. Paso de parametros por valor
6.3. Paso de pardmetros por referencia

7.1. La pila antes y después de apilar el registror4
7.2. La pila antes y después de desapilar el registrord
7.3. Llamadas anidadas a subrutinas cuando no se gestionan las
direcciones de retorno
7.4. Llamadas anidadas a subrutinas apilando las direcciones de
TetOrno oL e
7.5. Esquema del bloque de activaciéno
7.6. Estado de la pila después de una llamada a subrutina

8.1. Estructura de un dispositivo de entrada/salida

9.1. Estructura interna de un pin de E/S de un microcontrolador
de la familia Atmel AVR

185

9.2. Conexién de un LED a un pin de E/S de un microcontrolador 188

9.3. Conexién de un pulsador a un pin de E/S de un microcon-
trolador
9.4. Tarjeta ArduinoUno
9.5. Tarjeta ArduinoDue
9.6. Tarjeta de E/S de practicas de laboratorio
9.7. Esquema de la tarjeta de E/S de précticas de laboratorio
9.8. Tarjeta de E/S insertada en la Arduino Due
9.9. Entorno de programacién Arduino
9.10. Seleccién del sistema Arduino a emplear en Windows
9.11. Seleccién del sistema Arduino a emplear en GNU/Linux . . .
9.12. Seleccién del puerto de comunicaciones en Windows
9.13. Seleccién del puerto de comunicaciones en GNU /Linux
9.14. Entorno Arduino con el programa «blink» cargado

Indice de figuras

288

9.15. Resultado de la compilacién del programa «blink» 204
10.1. Método PWM para conversiéon Digital/Analégico 228
A.1. Estructura interna de un pin de E/S del microcontrolador
ATSAMSBXS8E e 233
A.2. Estructura interna del RTC del ATSAM3X8E 244
A.3. Formato del registro RTC Time Register 245
A.4. Formato del registro RTC Calendar Register 246
A.5. Formato del registro RTC Control Register 248
A.6. Formato del registro RTC Write Protect Mode Register . . . 249
A.7. Formato del registro RTC Status Register 249
A.8. Formato del registro RTC Status Clear Command Register . 249
A.9. Formato del registro RTC Valid Entry Register 250
A.10.Formato del registro RTC Mode Register 251
A.11.Formato del registro RTC Time Alarm Register 251
A.12.Formato del registro RTC Calendar Alarm Register 252

A.13.Formato del registro RTC Interrupt Enable Register 254

Indice de cuadros

1.1. Instrucciones de diferentes arquitecturas (funcién) 14
1.2. Instrucciones de diferentes arquitecturas (representaciéon) . . 15
5.1. Instrucciones de salto condicional 117

A.1. Direcciones base de los controladores PIO del ATSAM3XSE . 238
A.2. Registros de E/S de cada controlador PIO y sus desplaza-

mientos. Parte I o oo 239
A.3. Registros de E/S de cada controlador PIO y sus desplaza-

mientos. Parte IT 240
A.4. Registros de E/S de cada controlador PIO y sus desplaza-

mientos. Parte IIT 241
A.5. Pines y bits de los dispositivos de la tarjeta de E/S en la

tarjeta Arduino Due oL oo 242
A.6. Registros del temporizador del ATSAM3XS8E y sus direccio-

nesde E/S 243
A.7. Equivalencia entre decimal y BCD 244
A.8. Desplazamientos de los registros del RTC 247
A.9. Tipos de eventos peridédicos de hora 253
A.10.Tipos de eventos periédicos de fecha 253
A.11.Registros del temporizador en tiempo real del ATSAM3X8E

y sus direccionesde E/S o000 256
A.12.Algunas de las excepciones del ATSAM3XS8E y sus vectores

de interrupcion 258
A.13.1RQs del ATSAMS3XS8E y sus rutinas de tratamiento asocia-

das. Parte I o 262
A.14.1RQs del ATSAMS3XSE y sus rutinas de tratamiento asocia-

das. Parte IT o . 263
A.15.1RQs del ATSAMS3XSE y sus rutinas de tratamiento asocia-

das. Parte ITT 264

289

[ARMO5]

[Atm11]

[Atm12]

[BMCCCIFF13]

[BMCCFLT14]

[BMFLFFLN15]

[BMFLMA15]

Bibliografia

ARM Limited: ARM7TDMI data sheet, 1995.
http://pdfl.alldatasheet.es/datasheet-pdf/view/
88658/ETC/ARM7TDMI. html.

Atmel Corporation: ATmegal28: 8-bit Atmel micro-
controller with 128KBytes in-system programmable
flash, 2011. http://www.atmel.com/Images/doc2467.
pdf.

Atmel Corporation: AT9ISAM ARM-based flash
MCU datasheet, 2012. http://www.alldatasheet.es/
datasheet-pdf/pdf/476834/ATMEL/AT91SAM. html.

Barrachina Mir, Sergio, Maribel Castillo Catalan, José
M Claver Iborra y Juan C Fernandez Ferndndez: Prdc-
ticas de introduccion a la arquitectura de computadores
con el simulador SPIM. Pearson Educacién, 2013.

Barrachina Mir, Sergio, Maribel Castillo Catalan, Ger-
man Fabregat Llueca, Juan Carlos Fernandez Ferndn-
dez, German Ledén Navarro, José Vicente Marti Avilés,
Rafael Mayo Gual y Raul Montoliu Colas: Prdicticas
de introduccion a la arquitectura de computadores con
Qt ARMSim y Arduino, 2014. http://lorca.act.uji.
es/libro/practARM/.

Barrachina Mir, Sergio, German Fabregat Llueca,
Juan Carlos Fernandez Fernandez y Germéan Leén Na-
varro: Utilizando ARMSim y QtARMSim para la do-
cencia de arquitectura de computadores. ReVision,
8(3), 2015.

Barrachina Mir, Sergio, Germéan Fabregat Llueca y Jo-
sé Vicente Marti Avilés: Utilizando Arduino DUE en
la docencia de la entrada/salida. En Actas de las XXI

290

http://pdf1.alldatasheet.es/datasheet-pdf/view/88658/ETC/ARM7TDMI.html
http://pdf1.alldatasheet.es/datasheet-pdf/view/88658/ETC/ARM7TDMI.html
http://www.atmel.com/Images/doc2467.pdf
http://www.atmel.com/Images/doc2467.pdf
http://www.alldatasheet.es/datasheet-pdf/pdf/476834/ATMEL/AT91SAM.html
http://www.alldatasheet.es/datasheet-pdf/pdf/476834/ATMEL/AT91SAM.html
http://lorca.act.uji.es/libro/practARM/
http://lorca.act.uji.es/libro/practARM/

Bibliografia

291

[BMLNMA14]

[Cle99]

[Cle00]

[Clel10]

[Cle14]

[HH15]

[IEE04]

[0104]

[PH11]

[Shi13]

Jornadas de la Ensenanza Universitaria de la Infor-
mdatica (JENUI), paginas 58-65. Universitat Oberta
La Salle, 2015.

Barrachina Mir, Sergio, German Leén Navarro y Jo-
sé Vicente Marti Avilés: Conceptos elementales de
computadores, 2014. http://lorca.act.uji.es/docs/
conceptos_elementales_de_computadores.pdf.

Clements, Alan: Selecting a processor for teaching
computer architecture. Microprocessors and Microsys-
tems, 23(5):281-290, 1999, ISSN 0141-9331.

Clements, Alan: The wundergraduate curriculum in
computer architecture. IEEE Micro, 20(3):13-22, 2000,
ISSN 0272-1732.

Clements, Alan: Arms for the poor: Selecting a proces-
sor for teaching computer architecture. En Proceedings
of the 2010 IEEE Frontiers in Education Conference
(FIE), paginas T3E-1. IEEE, 2010.

Clements, Alan: Computer Organization and Architec-
ture: Themes and Variations. International Edition.
Cengage Learning, 2014.

Harris, Sarah y David Harris: Digital Design and Com-
puter Architecture: ARM Edition. Morgan Kaufmann,
2015.

IEEE/ACM Joint Task Force on Computing Curric-
ula. Computer Engineering.: Curriculum Guidelines
for Undergraduate Degree Programs in Computer En-

gineering. Informe técnico, IEEE Computer Society
Press and ACM Press, Diciembre 2004.

O’Sullivan, Dan y Tom Igoe: Physical computing: sens-
ing and controlling the physical world with computers.
Course Technology Press, 2004.

Patterson, David A y John L Hennessy: Estructura y
diseno de computadores: la interfaz software/hardwa-
re. Reverté, 2011.

Shiva, Sajjan G: Computer Organization, Design, and
Architecture. CRC Press, 2013.

http://lorca.act.uji.es/docs/conceptos_elementales_de_computadores.pdf
http://lorca.act.uji.es/docs/conceptos_elementales_de_computadores.pdf

Bibliografia 292

[Tex10] Texas Instruments Incorporated: Cortex-M3 In-
struction Set. Techmical User’s Manual, 2010.
http://users.ece.utexas.edu/~valvano/EE345M/
CortexM3InstructionSet.pdf.

http://users.ece.utexas.edu/~valvano/EE345M/CortexM3InstructionSet.pdf
http://users.ece.utexas.edu/~valvano/EE345M/CortexM3InstructionSet.pdf

	Índice general
	Prólogo
	Introducción
	Introducción a la Arquitectura de Computadores
	Componentes de un ordenador
	El procesador, el núcleo del ordenador
	Introducción a los buses
	La memoria

	Arquitectura ARM con QtARMSim
	Primeros pasos con ARM y QtARMSim
	Introducción al ensamblador Thumb de ARM
	Introducción al simulador QtARMSim
	Literales y constantes en el ensamblador de ARM
	Inicialización de datos y reserva de espacio
	Ejercicios

	Instrucciones de transformación de datos
	Banco de registros de ARM
	Operaciones aritméticas
	Operaciones lógicas
	Operaciones de desplazamiento
	Modos de direccionamiento y formatos de instrucción de ARM
	Ejercicios

	Instrucciones de transferencia de datos
	Instrucciones de carga
	Instrucciones de almacenamiento
	Modos de direccionamiento y formatos de instrucción de ARM
	Ejercicios

	Instrucciones de control de flujo
	Saltos incondicionales y condicionales
	Estructuras de control condicionales
	Estructuras de control repetitivas
	Modos de direccionamiento y formatos de instrucción de ARM
	Ejercicios

	Introducción a la gestión de subrutinas
	Llamada y retorno de una subrutina
	Paso de parámetros
	Ejercicios

	Gestión de subrutinas
	La pila
	Bloque de activación de una subrutina
	Ejercicios

	Entrada/salida con Arduino
	Introducción a la Entrada/Salida
	Generalidades y problemática de la entrada/salida
	Estructura de los sistemas y dispositivos de entrada/salida
	Ejercicios

	Dispositivos de Entrada/Salida
	Entrada/salida de propósito general (GPIO - General Purpose Input Output)
	Gestión del tiempo
	El entorno Arduino
	Creación de proyectos
	Ejercicios

	Gestión de la Entrada/Salida y otros aspectos avanzados
	Gestión de la entrada/salida
	Transferencia de datos y DMA
	Estandarización y extensión de la entrada/salida: buses y controladores
	Otros dispositivos
	Ejercicios

	Información técnica ATSAM3X8E
	GPIO en el Atmel ATSAM3X8E
	La tarjeta de entrada/salida
	El temporizador del Atmel ATSAM3X8E y del sistema Arduino
	El reloj en tiempo real del Atmel ATSAM3X8E
	El Temporizador en Tiempo Real (RTT) del Atmel ATSAM3X8E
	Gestión de excepciones e interrupciones en el ATSAM3X8E
	El controlador de DMA del ATSAM3X8E

	Breve guía de programación en ensamblador
	Variables
	Estructuras de programación
	Estructuras iterativas

	Guía rápida del ensamblador Thumb de ARM
	Índice de figuras
	Índice de cuadros
	Bibliografía

